Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(2sin(2x)-1)/(cos(2x)-3cos(x)+2)>= 0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos(2x)−3cos(x)+22sin(2x)−1​≥0

Solution

2πn<x≤12π​+2πnor3π​+2πn<x≤125π​+2πnor1213π​+2πn≤x≤1217π​+2πnor35π​+2πn<x<2π+2πn
+2
Interval Notation
(2πn,12π​+2πn]∪(3π​+2πn,125π​+2πn]∪[1213π​+2πn,1217π​+2πn]∪(35π​+2πn,2π+2πn)
Decimal
2πn<x≤0.26179…+2πnor1.04719…+2πn<x≤1.30899…+2πnor3.40339…+2πn≤x≤4.45058…+2πnor5.23598…+2πn<x<6.28318…+2πn
Solution steps
cos(2x)−3cos(x)+22sin(2x)−1​≥0
Use the following identity: cos(2x)=cos2(x)−sin2(x)2+cos2(x)−sin2(x)−3cos(x)−1+2sin(2x)​≥0
Periodicity of 2+cos2(x)−sin2(x)−3cos(x)−1+2sin(2x)​:2π
2+cos2(x)−sin2(x)−3cos(x)−1+2sin(2x)​is composed of the following functions and periods:sin(2x)with periodicity of 22π​
The compound periodicity is:=2π
Find the zeroes and undifined points of 2+cos2(x)−sin2(x)−3cos(x)−1+2sin(2x)​for 0≤x<2π
To find the zeroes, set the inequality to zero2+cos2(x)−sin2(x)−3cos(x)−1+2sin(2x)​=0
2+cos2(x)−sin2(x)−3cos(x)−1+2sin(2x)​=0,0≤x<2π:x=12π​,x=125π​,x=1213π​,x=1217π​
2+cos2(x)−sin2(x)−3cos(x)−1+2sin(2x)​=0,0≤x<2π
g(x)f(x)​=0⇒f(x)=0−1+2sin(2x)=0
Move 1to the right side
−1+2sin(2x)=0
Add 1 to both sides−1+2sin(2x)+1=0+1
Simplify2sin(2x)=1
2sin(2x)=1
Divide both sides by 2
2sin(2x)=1
Divide both sides by 222sin(2x)​=21​
Simplifysin(2x)=21​
sin(2x)=21​
General solutions for sin(2x)=21​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
2x=6π​+2πn,2x=65π​+2πn
2x=6π​+2πn,2x=65π​+2πn
Solve 2x=6π​+2πn:x=12π​+πn
2x=6π​+2πn
Divide both sides by 2
2x=6π​+2πn
Divide both sides by 222x​=26π​​+22πn​
Simplify
22x​=26π​​+22πn​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 26π​​+22πn​:12π​+πn
26π​​+22πn​
26π​​=12π​
26π​​
Apply the fraction rule: acb​​=c⋅ab​=6⋅2π​
Multiply the numbers: 6⋅2=12=12π​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
=12π​+πn
x=12π​+πn
x=12π​+πn
x=12π​+πn
Solve 2x=65π​+2πn:x=125π​+πn
2x=65π​+2πn
Divide both sides by 2
2x=65π​+2πn
Divide both sides by 222x​=265π​​+22πn​
Simplify
22x​=265π​​+22πn​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 265π​​+22πn​:125π​+πn
265π​​+22πn​
265π​​=125π​
265π​​
Apply the fraction rule: acb​​=c⋅ab​=6⋅25π​
Multiply the numbers: 6⋅2=12=125π​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
=125π​+πn
x=125π​+πn
x=125π​+πn
x=125π​+πn
x=12π​+πn,x=125π​+πn
Solutions for the range 0≤x<2πx=12π​,x=125π​,x=1213π​,x=1217π​
Find the undefined points:x=0,x=3π​,x=35π​
Find the zeros of the denominator2+cos2(x)−sin2(x)−3cos(x)=0
Rewrite using trig identities
2+cos2(x)−sin2(x)−3cos(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=2+cos2(x)−(1−cos2(x))−3cos(x)
Simplify 2+cos2(x)−(1−cos2(x))−3cos(x):2cos2(x)−3cos(x)+1
2+cos2(x)−(1−cos2(x))−3cos(x)
−(1−cos2(x)):−1+cos2(x)
−(1−cos2(x))
Distribute parentheses=−(1)−(−cos2(x))
Apply minus-plus rules−(−a)=a,−(a)=−a=−1+cos2(x)
=2+cos2(x)−1+cos2(x)−3cos(x)
Simplify 2+cos2(x)−1+cos2(x)−3cos(x):2cos2(x)−3cos(x)+1
2+cos2(x)−1+cos2(x)−3cos(x)
Group like terms=cos2(x)+cos2(x)−3cos(x)+2−1
Add similar elements: cos2(x)+cos2(x)=2cos2(x)=2cos2(x)−3cos(x)+2−1
Add/Subtract the numbers: 2−1=1=2cos2(x)−3cos(x)+1
=2cos2(x)−3cos(x)+1
=2cos2(x)−3cos(x)+1
1+2cos2(x)−3cos(x)=0
Solve by substitution
1+2cos2(x)−3cos(x)=0
Let: cos(x)=u1+2u2−3u=0
1+2u2−3u=0:u=1,u=21​
1+2u2−3u=0
Write in the standard form ax2+bx+c=02u2−3u+1=0
Solve with the quadratic formula
2u2−3u+1=0
Quadratic Equation Formula:
For a=2,b=−3,c=1u1,2​=2⋅2−(−3)±(−3)2−4⋅2⋅1​​
u1,2​=2⋅2−(−3)±(−3)2−4⋅2⋅1​​
(−3)2−4⋅2⋅1​=1
(−3)2−4⋅2⋅1​
Apply exponent rule: (−a)n=an,if n is even(−3)2=32=32−4⋅2⋅1​
Multiply the numbers: 4⋅2⋅1=8=32−8​
32=9=9−8​
Subtract the numbers: 9−8=1=1​
Apply rule 1​=1=1
u1,2​=2⋅2−(−3)±1​
Separate the solutionsu1​=2⋅2−(−3)+1​,u2​=2⋅2−(−3)−1​
u=2⋅2−(−3)+1​:1
2⋅2−(−3)+1​
Apply rule −(−a)=a=2⋅23+1​
Add the numbers: 3+1=4=2⋅24​
Multiply the numbers: 2⋅2=4=44​
Apply rule aa​=1=1
u=2⋅2−(−3)−1​:21​
2⋅2−(−3)−1​
Apply rule −(−a)=a=2⋅23−1​
Subtract the numbers: 3−1=2=2⋅22​
Multiply the numbers: 2⋅2=4=42​
Cancel the common factor: 2=21​
The solutions to the quadratic equation are:u=1,u=21​
Substitute back u=cos(x)cos(x)=1,cos(x)=21​
cos(x)=1,cos(x)=21​
cos(x)=1,0≤x<2π:x=0
cos(x)=1,0≤x<2π
General solutions for cos(x)=1
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=0+2πn
x=0+2πn
Solve x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn
Solutions for the range 0≤x<2πx=0
cos(x)=21​,0≤x<2π:x=3π​,x=35π​
cos(x)=21​,0≤x<2π
General solutions for cos(x)=21​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=3π​+2πn,x=35π​+2πn
x=3π​+2πn,x=35π​+2πn
Solutions for the range 0≤x<2πx=3π​,x=35π​
Combine all the solutionsx=0,x=3π​,x=35π​
0,12π​,3π​,125π​,1213π​,1217π​,35π​
Identify the intervals0<x<12π​,12π​<x<3π​,3π​<x<125π​,125π​<x<1213π​,1213π​<x<1217π​,1217π​<x<35π​,35π​<x<2π
Summarize in a table:−1+2sin(2x)2+cos2(x)−sin2(x)−3cos(x)2+cos2(x)−sin2(x)−3cos(x)−1+2sin(2x)​​x=0−0Undefined​0<x<12π​−−+​x=12π​0−0​12π​<x<3π​+−−​x=3π​+0Undefined​3π​<x<125π​+++​x=125π​0+0​125π​<x<1213π​−+−​x=1213π​0+0​1213π​<x<1217π​+++​x=1217π​0+0​1217π​<x<35π​−+−​x=35π​−0Undefined​35π​<x<2π−−+​x=2π−0Undefined​​
Identify the intervals that satisfy the required condition: ≥00<x<12π​orx=12π​or3π​<x<125π​orx=125π​orx=1213π​or1213π​<x<1217π​orx=1217π​or35π​<x<2π
Merge Overlapping Intervals
0<x≤12π​or3π​<x≤125π​or1213π​≤x≤1217π​or35π​<x<2π
The union of two intervals is the set of numbers which are in either interval
0<x<12π​orx=12π​
0<x≤12π​
The union of two intervals is the set of numbers which are in either interval
0<x≤12π​or3π​<x<125π​
0<x≤12π​or3π​<x<125π​
The union of two intervals is the set of numbers which are in either interval
0<x≤12π​or3π​<x<125π​orx=125π​
0<x≤12π​or3π​<x≤125π​
The union of two intervals is the set of numbers which are in either interval
0<x≤12π​or3π​<x≤125π​orx=1213π​
0<x≤12π​or3π​<x≤125π​orx=1213π​
The union of two intervals is the set of numbers which are in either interval
0<x≤12π​or3π​<x≤125π​orx=1213π​or1213π​<x<1217π​
0<x≤12π​or3π​<x≤125π​or1213π​≤x<1217π​
The union of two intervals is the set of numbers which are in either interval
0<x≤12π​or3π​<x≤125π​or1213π​≤x<1217π​orx=1217π​
0<x≤12π​or3π​<x≤125π​or1213π​≤x≤1217π​
The union of two intervals is the set of numbers which are in either interval
0<x≤12π​or3π​<x≤125π​or1213π​≤x≤1217π​or35π​<x<2π
0<x≤12π​or3π​<x≤125π​or1213π​≤x≤1217π​or35π​<x<2π
0<x≤12π​or3π​<x≤125π​or1213π​≤x≤1217π​or35π​<x<2π
Apply the periodicity of 2+cos2(x)−sin2(x)−3cos(x)−1+2sin(2x)​2πn<x≤12π​+2πnor3π​+2πn<x≤125π​+2πnor1213π​+2πn≤x≤1217π​+2πnor35π​+2πn<x<2π+2πn

Popular Examples

tan(x)>0.5sin(θ)>= 1/2sin(x/2)>= 0sin(pix)<0cos(2x)+cos(x)<0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024