Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos(2x)+cos(x)<0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos(2x)+cos(x)<0

Solution

3π​+2πn<x<π+2πnorπ+2πn<x<35π​+2πn
+2
Interval Notation
(3π​+2πn,π+2πn)∪(π+2πn,35π​+2πn)
Decimal
1.04719…+2πn<x<3.14159…+2πnor3.14159…+2πn<x<5.23598…+2πn
Solution steps
cos(2x)+cos(x)<0
Use the following identity: cos(2x)=−1+2cos2(x)−1+2cos2(x)+cos(x)<0
Let: u=cos(x)−1+2u2+u<0
−1+2u2+u<0:−1<u<21​
−1+2u2+u<0
Factor −1+2u2+u:(2u−1)(u+1)
−1+2u2+u
Write in the standard form ax2+bx+c=2u2+u−1
Break the expression into groups
2u2+u−1
Definition
Factors of 2:1,2
2
Divisors (Factors)
Find the Prime factors of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Add 1 1
The factors of 21,2
Negative factors of 2:−1,−2
Multiply the factors by −1 to get the negative factors−1,−2
For every two factors such that u∗v=−2,check if u+v=1
Check u=1,v=−2:u∗v=−2,u+v=−1⇒FalseCheck u=2,v=−1:u∗v=−2,u+v=1⇒True
u=2,v=−1
Group into (ax2+ux)+(vx+c)(2u2−u)+(2u−1)
=(2u2−u)+(2u−1)
Factor out ufrom 2u2−u:u(2u−1)
2u2−u
Apply exponent rule: ab+c=abacu2=uu=2uu−u
Factor out common term u=u(2u−1)
=u(2u−1)+(2u−1)
Factor out common term 2u−1=(2u−1)(u+1)
(2u−1)(u+1)<0
Identify the intervals
Find the signs of the factors of (2u−1)(u+1)
Find the signs of 2u−1
2u−1=0:u=21​
2u−1=0
Move 1to the right side
2u−1=0
Add 1 to both sides2u−1+1=0+1
Simplify2u=1
2u=1
Divide both sides by 2
2u=1
Divide both sides by 222u​=21​
Simplifyu=21​
u=21​
2u−1<0:u<21​
2u−1<0
Move 1to the right side
2u−1<0
Add 1 to both sides2u−1+1<0+1
Simplify2u<1
2u<1
Divide both sides by 2
2u<1
Divide both sides by 222u​<21​
Simplifyu<21​
u<21​
2u−1>0:u>21​
2u−1>0
Move 1to the right side
2u−1>0
Add 1 to both sides2u−1+1>0+1
Simplify2u>1
2u>1
Divide both sides by 2
2u>1
Divide both sides by 222u​>21​
Simplifyu>21​
u>21​
Find the signs of u+1
u+1=0:u=−1
u+1=0
Move 1to the right side
u+1=0
Subtract 1 from both sidesu+1−1=0−1
Simplifyu=−1
u=−1
u+1<0:u<−1
u+1<0
Move 1to the right side
u+1<0
Subtract 1 from both sidesu+1−1<0−1
Simplifyu<−1
u<−1
u+1>0:u>−1
u+1>0
Move 1to the right side
u+1>0
Subtract 1 from both sidesu+1−1>0−1
Simplifyu>−1
u>−1
Summarize in a table:2u−1u+1(2u−1)(u+1)​u<−1−−+​u=−1−00​−1<u<21​−+−​u=21​0+0​u>21​+++​​
Identify the intervals that satisfy the required condition: <0−1<u<21​
−1<u<21​
−1<u<21​
Substitute back u=cos(x)−1<cos(x)<21​
If a<u<bthen a<uandu<b−1<cos(x)andcos(x)<21​
−1<cos(x):−π+2πn<x<π+2πn
−1<cos(x)
Switch sidescos(x)>−1
For cos(x)>a, if −1≤a<1 then −arccos(a)+2πn<x<arccos(a)+2πn−arccos(−1)+2πn<x<arccos(−1)+2πn
Simplify −arccos(−1):−π
−arccos(−1)
Use the following trivial identity:arccos(−1)=πx−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=−π
Simplify arccos(−1):π
arccos(−1)
Use the following trivial identity:arccos(−1)=πx−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=π
−π+2πn<x<π+2πn
cos(x)<21​:3π​+2πn<x<35π​+2πn
cos(x)<21​
For cos(x)<a, if −1<a≤1 then arccos(a)+2πn<x<2π−arccos(a)+2πnarccos(21​)+2πn<x<2π−arccos(21​)+2πn
Simplify arccos(21​):3π​
arccos(21​)
Use the following trivial identity:arccos(21​)=3π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=3π​
Simplify 2π−arccos(21​):35π​
2π−arccos(21​)
Use the following trivial identity:arccos(21​)=3π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=2π−3π​
Simplify
2π−3π​
Convert element to fraction: 2π=32π3​=32π3​−3π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=32π3−π​
2π3−π=5π
2π3−π
Multiply the numbers: 2⋅3=6=6π−π
Add similar elements: 6π−π=5π=5π
=35π​
=35π​
3π​+2πn<x<35π​+2πn
Combine the intervals−π+2πn<x<π+2πnand3π​+2πn<x<35π​+2πn
Merge Overlapping Intervals3π​+2πn<x<π+2πnorπ+2πn<x<35π​+2πn

Popular Examples

solvefor x, pi/2-arctan(x^2)<= 0.0011/2 (10sin(2pi*60x))<-0.522sin^2(x)<1sqrt(2)sin(θ)-1<02arcsin(x^2-2x+(sqrt(3))/2)>(3pi)/2
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024