Lösungen
Integrale RechnerAbleitung RechnerAlgebra RechnerMatrix RechnerMehr...
Grafiken
LiniendiagrammExponentieller GraphQuadratischer GraphSinusdiagrammMehr...
Rechner
BMI-RechnerZinseszins-RechnerProzentrechnerBeschleunigungsrechnerMehr...
Geometrie
Satz des Pythagoras-RechnerKreis Fläche RechnerGleichschenkliges Dreieck RechnerDreiecke RechnerMehr...
AI Chat
Werkzeuge
NotizbuchGruppenSpickzettelArbeitsblätterÜbungenÜberprüfe
de
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Beliebt Trigonometrie >

sin(x)-cos(x)>1

  • Voralgebra
  • Algebra
  • Vorkalkül
  • Rechnen
  • Funktionen
  • Lineare Algebra
  • Trigonometrie
  • Statistik
  • Chemie
  • Ökonomie
  • Umrechnungen

Lösung

sin(x)−cos(x)>1

Lösung

2π​+2πn<x<π+2πn
+2
Intervall-Notation
(2π​+2πn,π+2πn)
Dezimale
1.57079…+2πn<x<3.14159…+2πn
Schritte zur Lösung
sin(x)−cos(x)>1
Verwende die folgenden Identitäten: −cos(x)+sin(x)=−2​cos(4π​+x)−2​cos(4π​+x)>1
Multipliziere beide Seiten mit −1
−2​cos(4π​+x)>1
Multipliziere beide Seiten mit -1 (kehre die Ungleichung um)(−2​cos(4π​+x))(−1)<1⋅(−1)
Vereinfache2​cos(4π​+x)<−1
2​cos(4π​+x)<−1
Teile beide Seiten durch 2​
2​cos(4π​+x)<−1
Teile beide Seiten durch 2​2​2​cos(4π​+x)​<2​−1​
Vereinfache
2​2​cos(4π​+x)​<2​−1​
Vereinfache 2​2​cos(4π​+x)​:cos(4π​+x)
2​2​cos(4π​+x)​
Streiche die gemeinsamen Faktoren: 2​=cos(4π​+x)
Vereinfache 2​−1​:−22​​
2​−1​
Wende Bruchregel an: b−a​=−ba​=−2​1​
Rationalisiere −2​1​:−22​​
−2​1​
Multipliziere mit dem Konjugat 2​2​​=−2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Wende Radikal Regel an: a​a​=a2​2​=2=2
=−22​​
=−22​​
cos(4π​+x)<−22​​
cos(4π​+x)<−22​​
cos(4π​+x)<−22​​
Für cos(x)<a, wenn −1<a≤1 dann arccos(a)+2πn<x<2π−arccos(a)+2πnarccos(−22​​)+2πn<(4π​+x)<2π−arccos(−22​​)+2πn
Wenn a<u<bdann a<uandu<barccos(−22​​)+2πn<4π​+xand4π​+x<2π−arccos(−22​​)+2πn
arccos(−22​​)+2πn<4π​+x:x>2πn+2π​
arccos(−22​​)+2πn<4π​+x
Tausche die Seiten4π​+x>arccos(−22​​)+2πn
Vereinfache arccos(−22​​)+2πn:43π​+2πn
arccos(−22​​)+2πn
Verwende die folgende triviale Identität:arccos(−22​​)=43π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=43π​+2πn
4π​+x>43π​+2πn
Verschiebe 4π​auf die rechte Seite
4π​+x>43π​+2πn
Subtrahiere 4π​ von beiden Seiten4π​+x−4π​>43π​+2πn−4π​
Vereinfache
4π​+x−4π​>43π​+2πn−4π​
Vereinfache 4π​+x−4π​:x
4π​+x−4π​
Addiere gleiche Elemente: 4π​−4π​>0
=x
Vereinfache 43π​+2πn−4π​:2πn+2π​
43π​+2πn−4π​
Fasse gleiche Terme zusammen=2πn−4π​+43π​
Ziehe Brüche zusammen −4π​+43π​:2π​
Wende Regel an ca​±cb​=ca±b​=4−π+3π​
Addiere gleiche Elemente: −π+3π=2π=42π​
Streiche die gemeinsamen Faktoren: 2=2π​
=2πn+2π​
x>2πn+2π​
x>2πn+2π​
x>2πn+2π​
4π​+x<2π−arccos(−22​​)+2πn:x<π+2πn
4π​+x<2π−arccos(−22​​)+2πn
Vereinfache 2π−arccos(−22​​)+2πn:2π−43π​+2πn
2π−arccos(−22​​)+2πn
Verwende die folgende triviale Identität:arccos(−22​​)=43π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=2π−43π​+2πn
4π​+x<2π−43π​+2πn
Verschiebe 4π​auf die rechte Seite
4π​+x<2π−43π​+2πn
Subtrahiere 4π​ von beiden Seiten4π​+x−4π​<2π−43π​+2πn−4π​
Vereinfache
4π​+x−4π​<2π−43π​+2πn−4π​
Vereinfache 4π​+x−4π​:x
4π​+x−4π​
Addiere gleiche Elemente: 4π​−4π​<0
=x
Vereinfache 2π−43π​+2πn−4π​:π+2πn
2π−43π​+2πn−4π​
Fasse gleiche Terme zusammen=2π+2πn−4π​−43π​
Ziehe Brüche zusammen −4π​−43π​:−π
Wende Regel an ca​±cb​=ca±b​=4−π−3π​
Addiere gleiche Elemente: −π−3π=−4π=4−4π​
Wende Bruchregel an: b−a​=−ba​=−44π​
Teile die Zahlen: 44​=1=−π
=2π+2πn−π
Fasse gleiche Terme zusammen=2π−π+2πn
Addiere gleiche Elemente: 2π−π=π=π+2πn
x<π+2πn
x<π+2πn
x<π+2πn
Kombiniere die Bereichex>2πn+2π​andx<π+2πn
Füge die sich überschneidenden Intervalle zusammen2π​+2πn<x<π+2πn

Beliebte Beispiele

sin(y)>0sin(y)>02sin(x)+1>= 02sin(x)+1≥0cos^2(x)> 5/6cos2(x)>65​((2cos(x)+1))/((2sin(x)-sqrt(3)))>0(2sin(x)−3​)(2cos(x)+1)​>0cos^2(x)-cos(2x)>0cos2(x)−cos(2x)>0
LernwerkzeugeKI-Mathe-LöserAI ChatArbeitsblätterÜbungenSpickzettelRechnerGrafikrechnerGeometrie-RechnerLösung überprüfen
AppsSymbolab App (Android)Grafikrechner (Android)Übungen (Android)Symbolab App (iOS)Grafikrechner (iOS)Übungen (iOS)Chrome-Erweiterung
UnternehmenÜber SymbolabBlogHilfe
LegalDatenschutzbestimmungenService TermsCookiesCookie-EinstellungenVerkaufen oder teilen Sie meine persönlichen Daten nichtUrheberrecht, Community-Richtlinien, DSA und andere rechtliche RessourcenLearneo Rechtszentrum
Soziale Medien
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024