Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

-2<= 2/(cos(x))<= 1

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

−2≤cos(x)2​≤1

Solution

x=π+2πn
+1
Decimal
x=3.14159…+2πn
Solution steps
−2≤cos(x)2​≤1
If a≤u≤bthen a≤uandu≤b−2≤cos(x)2​andcos(x)2​≤1
−2≤cos(x)2​:−2π​+2πn<x<2π​+2πnorx=π+2πn
−2≤cos(x)2​
Switch sidescos(x)2​≥−2
Rewrite in standard form
cos(x)2​≥−2
Add 2 to both sidescos(x)2​+2≥−2+2
Simplifycos(x)2​+2≥0
Simplify cos(x)2​+2:cos(x)2+2cos(x)​
cos(x)2​+2
Convert element to fraction: 2=cos(x)2cos(x)​=cos(x)2​+cos(x)2cos(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(x)2+2cos(x)​
cos(x)2+2cos(x)​≥0
cos(x)2+2cos(x)​≥0
Factor cos(x)2+2cos(x)​:cos(x)2(cos(x)+1)​
cos(x)2+2cos(x)​
Factor 2cos(x)+2:2(cos(x)+1)
2cos(x)+2
Factor out common term 2=2(cos(x)+1)
=cos(x)2(cos(x)+1)​
cos(x)2(cos(x)+1)​≥0
Divide both sides by 22cos(x)2(cos(x)+1)​​≥20​
Simplifycos(x)cos(x)+1​≥0
Identify the intervals
Find the signs of the factors of cos(x)cos(x)+1​
Find the signs of cos(x)+1
cos(x)+1=0:cos(x)=−1
cos(x)+1=0
Move 1to the right side
cos(x)+1=0
Subtract 1 from both sidescos(x)+1−1=0−1
Simplifycos(x)=−1
cos(x)=−1
cos(x)+1<0:cos(x)<−1
cos(x)+1<0
Move 1to the right side
cos(x)+1<0
Subtract 1 from both sidescos(x)+1−1<0−1
Simplifycos(x)<−1
cos(x)<−1
cos(x)+1>0:cos(x)>−1
cos(x)+1>0
Move 1to the right side
cos(x)+1>0
Subtract 1 from both sidescos(x)+1−1>0−1
Simplifycos(x)>−1
cos(x)>−1
Find the signs of cos(x)
cos(x)=0
cos(x)<0
cos(x)>0
Find singularity points
Find the zeros of the denominator cos(x):cos(x)=0
Summarize in a table:cos(x)+1cos(x)cos(x)cos(x)+1​​cos(x)<−1−−+​cos(x)=−10−0​−1<cos(x)<0+−−​cos(x)=0+0Undefined​cos(x)>0+++​​
Identify the intervals that satisfy the required condition: ≥0cos(x)<−1orcos(x)=−1orcos(x)>0
Merge Overlapping Intervals
cos(x)≤−1orcos(x)>0
The union of two intervals is the set of numbers which are in either interval
cos(x)<−1orcos(x)=−1
cos(x)≤−1
The union of two intervals is the set of numbers which are in either interval
cos(x)≤−1orcos(x)>0
cos(x)≤−1orcos(x)>0
cos(x)≤−1orcos(x)>0
cos(x)≤−1orcos(x)>0
cos(x)≤−1:x=π+2πn
cos(x)≤−1
For cos(x)≤a, if −1<a<1 then arccos(a)+2πn≤x≤2π−arccos(a)+2πnarccos(−1)+2πn≤x≤2π−arccos(−1)+2πn
Simplify arccos(−1):π
arccos(−1)
Use the following trivial identity:arccos(−1)=πx−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=π
Simplify 2π−arccos(−1):π
2π−arccos(−1)
Use the following trivial identity:arccos(−1)=πx−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=2π−π
Add similar elements: 2π−π=π=π
π+2πn≤x≤π+2πn
Simplifyx=π+2πn
cos(x)>0:−2π​+2πn<x<2π​+2πn
cos(x)>0
For cos(x)>a, if −1≤a<1 then −arccos(a)+2πn<x<arccos(a)+2πn−arccos(0)+2πn<x<arccos(0)+2πn
Simplify −arccos(0):−2π​
−arccos(0)
Use the following trivial identity:arccos(0)=2π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=−2π​
Simplify arccos(0):2π​
arccos(0)
Use the following trivial identity:arccos(0)=2π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=2π​
−2π​+2πn<x<2π​+2πn
Combine the intervalsx=π+2πnor−2π​+2πn<x<2π​+2πn
Merge Overlapping Intervals−2π​+2πn<x<2π​+2πnorx=π+2πn
cos(x)2​≤1:2π​+2πn<x<23π​+2πn
cos(x)2​≤1
Rewrite in standard form
cos(x)2​≤1
Subtract 1 from both sidescos(x)2​−1≤1−1
Simplifycos(x)2​−1≤0
Simplify cos(x)2​−1:cos(x)2−cos(x)​
cos(x)2​−1
Convert element to fraction: 1=cos(x)1cos(x)​=cos(x)2​−cos(x)1⋅cos(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(x)2−1⋅cos(x)​
Multiply: 1⋅cos(x)=cos(x)=cos(x)2−cos(x)​
cos(x)2−cos(x)​≤0
cos(x)2−cos(x)​≤0
Identify the intervals
Find the signs of the factors of cos(x)2−cos(x)​
Find the signs of 2−cos(x)
2−cos(x)=0:cos(x)=2
2−cos(x)=0
Move 2to the right side
2−cos(x)=0
Subtract 2 from both sides2−cos(x)−2=0−2
Simplify−cos(x)=−2
−cos(x)=−2
Divide both sides by −1
−cos(x)=−2
Divide both sides by −1−1−cos(x)​=−1−2​
Simplifycos(x)=2
cos(x)=2
2−cos(x)<0:cos(x)>2
2−cos(x)<0
Move 2to the right side
2−cos(x)<0
Subtract 2 from both sides2−cos(x)−2<0−2
Simplify−cos(x)<−2
−cos(x)<−2
Multiply both sides by −1
−cos(x)<−2
Multiply both sides by -1 (reverse the inequality)(−cos(x))(−1)>(−2)(−1)
Simplifycos(x)>2
cos(x)>2
2−cos(x)>0:cos(x)<2
2−cos(x)>0
Move 2to the right side
2−cos(x)>0
Subtract 2 from both sides2−cos(x)−2>0−2
Simplify−cos(x)>−2
−cos(x)>−2
Multiply both sides by −1
−cos(x)>−2
Multiply both sides by -1 (reverse the inequality)(−cos(x))(−1)<(−2)(−1)
Simplifycos(x)<2
cos(x)<2
Find the signs of cos(x)
cos(x)=0
cos(x)<0
cos(x)>0
Find singularity points
Find the zeros of the denominator cos(x):cos(x)=0
Summarize in a table:2−cos(x)cos(x)cos(x)2−cos(x)​​cos(x)<0+−−​cos(x)=0+0Undefined​0<cos(x)<2+++​cos(x)=20+0​cos(x)>2−+−​​
Identify the intervals that satisfy the required condition: ≤0cos(x)<0orcos(x)=2orcos(x)>2
Merge Overlapping Intervals
cos(x)<0orcos(x)=2orcos(x)>2
The union of two intervals is the set of numbers which are in either interval
cos(x)<0orcos(x)=2
cos(x)<0orcos(x)=2
The union of two intervals is the set of numbers which are in either interval
cos(x)<0orcos(x)=2orcos(x)>2
cos(x)<0orcos(x)≥2
cos(x)<0orcos(x)≥2
cos(x)<0orcos(x)≥2
cos(x)<0:2π​+2πn<x<23π​+2πn
cos(x)<0
For cos(x)<a, if −1<a≤1 then arccos(a)+2πn<x<2π−arccos(a)+2πnarccos(0)+2πn<x<2π−arccos(0)+2πn
Simplify arccos(0):2π​
arccos(0)
Use the following trivial identity:arccos(0)=2π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=2π​
Simplify 2π−arccos(0):23π​
2π−arccos(0)
Use the following trivial identity:arccos(0)=2π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=2π−2π​
Simplify
2π−2π​
Convert element to fraction: 2π=22π2​=22π2​−2π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=22π2−π​
2π2−π=3π
2π2−π
Multiply the numbers: 2⋅2=4=4π−π
Add similar elements: 4π−π=3π=3π
=23π​
=23π​
2π​+2πn<x<23π​+2πn
cos(x)≥2:False for all x∈R
cos(x)≥2
Range of cos(x):−1≤cos(x)≤1
Function range definition
The range of the basic cosfunction is −1≤cos(x)≤1−1≤cos(x)≤1
cos(x)≥2and−1≤cos(x)≤1:False
Let y=cos(x)
Combine the intervalsy≥2and−1≤y≤1
Merge Overlapping Intervals
y≥2and−1≤y≤1
The intersection of two intervals is the set of numbers which are in both intervals
y≥2and−1≤y≤1
Falseforally∈R
Falseforally∈R
NoSolutionforx∈R
Falseforallx∈R
Combine the intervals2π​+2πn<x<23π​+2πnorFalseforallx∈R
Merge Overlapping Intervals2π​+2πn<x<23π​+2πn
Combine the intervals(−2π​+2πn<x<2π​+2πnorx=π+2πn)and2π​+2πn<x<23π​+2πn
Merge Overlapping Intervalsx=π+2πn

Popular Examples

2-4sin(3x)0<= x<= 2pi0<2sin(x)cos(x)<2sqrt(2)cot(θ)>0\land csc(θ)<0sin(A)=(-4)/5 \land cos(A)>0,cos(A)sin(θ)= 2/5 \land sec(θ)>0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024