Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cosh(θ)= 7/3 \land θ<0,sinh(θ)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cosh(θ)=37​andθ<0,sinh(θ)

Solution

θ=ln(37−210​​)
+1
Decimal
θ=−1.49099…
Solution steps
cosh(θ)=37​andθ<0
cosh(θ)=37​:θ=ln(37+210​​),θ=ln(37−210​​)
cosh(θ)=37​
Rewrite using trig identities
cosh(θ)=37​
Use the Hyperbolic identity: cosh(x)=2ex+e−x​2eθ+e−θ​=37​
2eθ+e−θ​=37​
2eθ+e−θ​=37​:θ=ln(37+210​​),θ=ln(37−210​​)
2eθ+e−θ​=37​
Apply fraction cross multiply: if ba​=dc​ then a⋅d=b⋅c(eθ+e−θ)⋅3=2⋅7
Simplify(eθ+e−θ)⋅3=14
Apply exponent rules
(eθ+e−θ)⋅3=14
Apply exponent rule: abc=(ab)ce−θ=(eθ)−1(eθ+(eθ)−1)⋅3=14
(eθ+(eθ)−1)⋅3=14
Rewrite the equation with eθ=u(u+(u)−1)⋅3=14
Solve (u+u−1)⋅3=14:u=37+210​​,u=37−210​​
(u+u−1)⋅3=14
Refine(u+u1​)⋅3=14
Simplify (u+u1​)⋅3:3(u+u1​)
(u+u1​)⋅3
Apply the commutative law: (u+u1​)⋅3=3(u+u1​)3(u+u1​)
3(u+u1​)=14
Expand 3(u+u1​):3u+u3​
3(u+u1​)
Apply the distributive law: a(b+c)=ab+aca=3,b=u,c=u1​=3u+3⋅u1​
3⋅u1​=u3​
3⋅u1​
Multiply fractions: a⋅cb​=ca⋅b​=u1⋅3​
Multiply the numbers: 1⋅3=3=u3​
=3u+u3​
3u+u3​=14
Multiply both sides by u
3u+u3​=14
Multiply both sides by u3uu+u3​u=14u
Simplify
3uu+u3​u=14u
Simplify 3uu:3u2
3uu
Apply exponent rule: ab⋅ac=ab+cuu=u1+1=3u1+1
Add the numbers: 1+1=2=3u2
Simplify u3​u:3
u3​u
Multiply fractions: a⋅cb​=ca⋅b​=u3u​
Cancel the common factor: u=3
3u2+3=14u
3u2+3=14u
3u2+3=14u
Solve 3u2+3=14u:u=37+210​​,u=37−210​​
3u2+3=14u
Move 14uto the left side
3u2+3=14u
Subtract 14u from both sides3u2+3−14u=14u−14u
Simplify3u2+3−14u=0
3u2+3−14u=0
Write in the standard form ax2+bx+c=03u2−14u+3=0
Solve with the quadratic formula
3u2−14u+3=0
Quadratic Equation Formula:
For a=3,b=−14,c=3u1,2​=2⋅3−(−14)±(−14)2−4⋅3⋅3​​
u1,2​=2⋅3−(−14)±(−14)2−4⋅3⋅3​​
(−14)2−4⋅3⋅3​=410​
(−14)2−4⋅3⋅3​
Apply exponent rule: (−a)n=an,if n is even(−14)2=142=142−4⋅3⋅3​
Multiply the numbers: 4⋅3⋅3=36=142−36​
142=196=196−36​
Subtract the numbers: 196−36=160=160​
Prime factorization of 160:25⋅5
160
160divides by 2160=80⋅2=2⋅80
80divides by 280=40⋅2=2⋅2⋅40
40divides by 240=20⋅2=2⋅2⋅2⋅20
20divides by 220=10⋅2=2⋅2⋅2⋅2⋅10
10divides by 210=5⋅2=2⋅2⋅2⋅2⋅2⋅5
2,5 are all prime numbers, therefore no further factorization is possible=2⋅2⋅2⋅2⋅2⋅5
=25⋅5
=25⋅5​
Apply exponent rule: ab+c=ab⋅ac=24⋅2⋅5​
Apply radical rule: =24​2⋅5​
Apply radical rule: 24​=224​=22=222⋅5​
Refine=410​
u1,2​=2⋅3−(−14)±410​​
Separate the solutionsu1​=2⋅3−(−14)+410​​,u2​=2⋅3−(−14)−410​​
u=2⋅3−(−14)+410​​:37+210​​
2⋅3−(−14)+410​​
Apply rule −(−a)=a=2⋅314+410​​
Multiply the numbers: 2⋅3=6=614+410​​
Factor 14+410​:2(7+210​)
14+410​
Rewrite as=2⋅7+2⋅210​
Factor out common term 2=2(7+210​)
=62(7+210​)​
Cancel the common factor: 2=37+210​​
u=2⋅3−(−14)−410​​:37−210​​
2⋅3−(−14)−410​​
Apply rule −(−a)=a=2⋅314−410​​
Multiply the numbers: 2⋅3=6=614−410​​
Factor 14−410​:2(7−210​)
14−410​
Rewrite as=2⋅7−2⋅210​
Factor out common term 2=2(7−210​)
=62(7−210​)​
Cancel the common factor: 2=37−210​​
The solutions to the quadratic equation are:u=37+210​​,u=37−210​​
u=37+210​​,u=37−210​​
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of (u+u−1)3 and compare to zero
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=37+210​​,u=37−210​​
u=37+210​​,u=37−210​​
Substitute back u=eθ,solve for θ
Solve eθ=37+210​​:θ=ln(37+210​​)
eθ=37+210​​
Apply exponent rules
eθ=37+210​​
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(eθ)=ln(37+210​​)
Apply log rule: ln(ea)=aln(eθ)=θθ=ln(37+210​​)
θ=ln(37+210​​)
Solve eθ=37−210​​:θ=ln(37−210​​)
eθ=37−210​​
Apply exponent rules
eθ=37−210​​
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(eθ)=ln(37−210​​)
Apply log rule: ln(ea)=aln(eθ)=θθ=ln(37−210​​)
θ=ln(37−210​​)
θ=ln(37+210​​),θ=ln(37−210​​)
θ=ln(37+210​​),θ=ln(37−210​​)
Combine the intervals(θ=ln(37−210​​)orθ=ln(37+210​​))andθ<0
Merge Overlapping Intervals
θ=ln(37−210​​)orθ=ln(37+210​​)andθ<0
The intersection of two intervals is the set of numbers which are in both intervals
θ=ln(37−210​​)orθ=ln(37+210​​)andθ<0
θ=ln(37−210​​)
θ=ln(37−210​​)

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos(x)<= sin^2(x)<= (sqrt(3))/2 sin(x)sin(x)= 1/(sqrt(5))\land cos(x)<0cot(θ)<0\land sec(θ)>06sin(x)0<= x<= (3pi)/2-1<=-cos(2x)<= 1
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024