Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos(x)<= sin^2(x)<= (sqrt(3))/2 sin(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos(x)≤sin2(x)≤23​​sin(x)

Solution

arccos(25​−1​)+2πn≤x≤3π​+2πnor32π​+2πn≤x≤π+2πn
+2
Interval Notation
[arccos(25​−1​)+2πn,3π​+2πn]∪[32π​+2πn,π+2πn]
Decimal
0.90455…+2πn≤x≤1.04719…+2πnor2.09439…+2πn≤x≤3.14159…+2πn
Solution steps
cos(x)≤sin2(x)≤23​​sin(x)
If a≤u≤bthen a≤uandu≤bcos(x)≤sin2(x)andsin2(x)≤23​​sin(x)
cos(x)≤sin2(x):arccos(25​−1​)+2πn≤x≤2π−arccos(25​−1​)+2πn
cos(x)≤sin2(x)
Move sin2(x)to the left side
cos(x)≤sin2(x)
Subtract sin2(x) from both sidescos(x)−sin2(x)≤sin2(x)−sin2(x)
cos(x)−sin2(x)≤0
cos(x)−sin2(x)≤0
Use the following identity: cos2(x)+sin2(x)=1Therefore sin2(x)=1−cos2(x)cos(x)−(1−cos2(x))≤0
Simplifycos(x)−1+cos2(x)≤0
Let: u=cos(x)u−1+u2≤0
u−1+u2≤0:2−5​−1​≤u≤25​−1​
u−1+u2≤0
Complete the square u−1+u2:(u+21​)2−45​
u−1+u2
Write in the standard form ax2+bx+cu2+u−1
Write u2+u−1in the form: x2+2ax+a2
2a=1:a=21​
2a=1
Divide both sides by 2
2a=1
Divide both sides by 222a​=21​
Simplifya=21​
a=21​
Add and subtract (21​)2u2+u−1+(21​)2−(21​)2
x2+2ax+a2=(x+a)2u2+1u+(21​)2=(u+21​)2(u+21​)2−1−(21​)2
Simplify(u+21​)2−45​
(u+21​)2−45​≤0
Move 45​to the right side
(u+21​)2−45​≤0
Add 45​ to both sides(u+21​)2−45​+45​≤0+45​
Simplify(u+21​)2≤45​
(u+21​)2≤45​
For un≤a, if nis even then
−45​​≤u+21​≤45​​
If a≤u≤bthen a≤uandu≤b−45​​≤u+21​andu+21​≤45​​
−45​​≤u+21​:u≥2−5​−1​
−45​​≤u+21​
Switch sidesu+21​≥−45​​
Simplify 45​​:25​​
45​​
Apply radical rule: assuming a≥0,b≥0=4​5​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=25​​
u+21​≥−25​​
Move 21​to the right side
u+21​≥−25​​
Subtract 21​ from both sidesu+21​−21​≥−25​​−21​
Simplify
u+21​−21​≥−25​​−21​
Simplify u+21​−21​:u
u+21​−21​
Add similar elements: 21​−21​≥0
=u
Simplify −25​​−21​:2−5​−1​
−25​​−21​
Apply rule ca​±cb​=ca±b​=2−5​−1​
u≥2−5​−1​
u≥2−5​−1​
u≥2−5​−1​
u+21​≤45​​:u≤25​−1​
u+21​≤45​​
Apply radical rule: assuming a≥0,b≥0u+21​≤4​5​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
u+21​≤25​​
Move 21​to the right side
u+21​≤25​​
Subtract 21​ from both sidesu+21​−21​≤25​​−21​
Simplify
u+21​−21​≤25​​−21​
Simplify u+21​−21​:u
u+21​−21​
Add similar elements: 21​−21​≤0
=u
Simplify 25​​−21​:25​−1​
25​​−21​
Apply rule ca​±cb​=ca±b​=25​−1​
u≤25​−1​
u≤25​−1​
u≤25​−1​
Combine the intervalsu≥2−5​−1​andu≤25​−1​
Merge Overlapping Intervals
u≥2−5​−1​andu≤25​−1​
The intersection of two intervals is the set of numbers which are in both intervals
u≥2−5​−1​andu≤25​−1​
2−5​−1​≤u≤25​−1​
2−5​−1​≤u≤25​−1​
2−5​−1​≤u≤25​−1​
Substitute back u=cos(x)2−5​−1​≤cos(x)≤25​−1​
If a≤u≤bthen a≤uandu≤b2−5​−1​≤cos(x)andcos(x)≤25​−1​
2−5​−1​≤cos(x):True for all x∈R
2−5​−1​≤cos(x)
Switch sidescos(x)≥2−5​−1​
Range of cos(x):−1≤cos(x)≤1
Function range definition
The range of the basic cosfunction is −1≤cos(x)≤1−1≤cos(x)≤1
cos(x)≥2−5​−1​and−1≤cos(x)≤1:−1≤cos(x)≤1
Let y=cos(x)
Combine the intervalsy≥2−5​−1​and−1≤y≤1
Merge Overlapping Intervals
y≥2−5​−1​and−1≤y≤1
The intersection of two intervals is the set of numbers which are in both intervals
y≥2−5​−1​and−1≤y≤1
−1≤y≤1
−1≤y≤1
Trueforallx
Trueforallx∈R
cos(x)≤25​−1​:arccos(25​−1​)+2πn≤x≤2π−arccos(25​−1​)+2πn
cos(x)≤25​−1​
For cos(x)≤a, if −1<a<1 then arccos(a)+2πn≤x≤2π−arccos(a)+2πnarccos(25​−1​)+2πn≤x≤2π−arccos(25​−1​)+2πn
Combine the intervalsTrueforallx∈Randarccos(25​−1​)+2πn≤x≤2π−arccos(25​−1​)+2πn
Merge Overlapping Intervalsarccos(25​−1​)+2πn≤x≤2π−arccos(25​−1​)+2πn
sin2(x)≤23​​sin(x):2πn≤x≤3π​+2πnor32π​+2πn≤x≤π+2πn
sin2(x)≤23​​sin(x)
Let: u=sin(x)u2≤23​​u
u2≤23​​u:0≤u≤23​​
u2≤23​​u
Rewrite in standard form
u2≤23​​u
Subtract 23​​u from both sidesu2−23​​u≤23​​u−23​​u
Simplifyu2−23​​u≤0
Multiply both sides by 2u2⋅2−23​​u⋅2≤0⋅2
2u2−3​u≤0
2u2−3​u≤0
Factor 2u2−3​u:u(2u−3​)
2u2−3​u
Apply exponent rule: ab+c=abacu2=uu=2uu−3​u
Factor out common term u
Multiply the numbers: 1⋅2=2=u(2u−3​)
u(2u−3​)≤0
Identify the intervals
Find the signs of the factors of u(2u−3​)
Find the signs of u
u=0
u<0
u>0
Find the signs of 2u−3​
2u−3​=0:u=23​​
2u−3​=0
Move 3​to the right side
2u−3​=0
Add 3​ to both sides2u−3​+3​=0+3​
Simplify2u=3​
2u=3​
Divide both sides by 2
2u=3​
Divide both sides by 222u​=23​​
Simplifyu=23​​
u=23​​
2u−3​<0:u<23​​
2u−3​<0
Move 3​to the right side
2u−3​<0
Add 3​ to both sides2u−3​+3​<0+3​
Simplify2u<3​
2u<3​
Divide both sides by 2
2u<3​
Divide both sides by 222u​<23​​
Simplifyu<23​​
u<23​​
2u−3​>0:u>23​​
2u−3​>0
Move 3​to the right side
2u−3​>0
Add 3​ to both sides2u−3​+3​>0+3​
Simplify2u>3​
2u>3​
Divide both sides by 2
2u>3​
Divide both sides by 222u​>23​​
Simplifyu>23​​
u>23​​
Summarize in a table:u2u−3​u(2u−3​)​u<0−−+​u=00−0​0<u<23​​+−−​u=23​​+00​u>23​​+++​​
Identify the intervals that satisfy the required condition: ≤0u=0or0<u<23​​oru=23​​
Merge Overlapping Intervals
0≤u<23​​oru=23​​
The union of two intervals is the set of numbers which are in either interval
u=0or0<u<23​​
0≤u<23​​
The union of two intervals is the set of numbers which are in either interval
0≤u<23​​oru=23​​
0≤u≤23​​
0≤u≤23​​
0≤u≤23​​
0≤u≤23​​
Substitute back u=sin(x)0≤sin(x)≤23​​
If a≤u≤bthen a≤uandu≤b0≤sin(x)andsin(x)≤23​​
0≤sin(x):2πn≤x≤π+2πn
0≤sin(x)
Switch sidessin(x)≥0
For sin(x)≥a, if −1<a<1 then arcsin(a)+2πn≤x≤π−arcsin(a)+2πnarcsin(0)+2πn≤x≤π−arcsin(0)+2πn
Simplify arcsin(0):0
arcsin(0)
Use the following trivial identity:arcsin(0)=0x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=0
Simplify π−arcsin(0):π
π−arcsin(0)
Use the following trivial identity:arcsin(0)=0x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=π−0
π−0=π=π
0+2πn≤x≤π+2πn
Simplify2πn≤x≤π+2πn
sin(x)≤23​​:−34π​+2πn≤x≤3π​+2πn
sin(x)≤23​​
For sin(x)≤a, if −1<a<1 then −π−arcsin(a)+2πn≤x≤arcsin(a)+2πn−π−arcsin(23​​)+2πn≤x≤arcsin(23​​)+2πn
Simplify −π−arcsin(23​​):−34π​
−π−arcsin(23​​)
Use the following trivial identity:arcsin(23​​)=3π​x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=−π−3π​
Simplify
−π−3π​
Convert element to fraction: π=3π3​=−3π3​−3π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=3−π3−π​
Add similar elements: −3π−π=−4π=3−4π​
Apply the fraction rule: b−a​=−ba​=−34π​
=−34π​
Simplify arcsin(23​​):3π​
arcsin(23​​)
Use the following trivial identity:arcsin(23​​)=3π​x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=3π​
−34π​+2πn≤x≤3π​+2πn
Combine the intervals2πn≤x≤π+2πnand−34π​+2πn≤x≤3π​+2πn
Merge Overlapping Intervals2πn≤x≤3π​+2πnor32π​+2πn≤x≤π+2πn
Combine the intervalsarccos(25​−1​)+2πn≤x≤2π−arccos(25​−1​)+2πnand(2πn≤x≤3π​+2πnor32π​+2πn≤x≤π+2πn)
Merge Overlapping Intervalsarccos(25​−1​)+2πn≤x≤3π​+2πnor32π​+2πn≤x≤π+2πn

Popular Examples

sin(x)= 1/(sqrt(5))\land cos(x)<0cot(θ)<0\land sec(θ)>06sin(x)0<= x<= (3pi)/2-1<=-cos(2x)<= 10<= 2sin(3x)+1<2pi
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024