Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

0<= 2sin(3x)+1<2pi

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

0≤2sin(3x)+1<2π

Solution

−18π​+32π​n≤x≤187π​+32π​n
+2
Interval Notation
[−18π​+32π​n,187π​+32π​n]
Decimal
−0.17453…+32π​n≤x≤1.22173…+32π​n
Solution steps
0≤2sin(3x)+1<2π
If a≤u<bthen a≤uandu<b0≤2sin(3x)+1and2sin(3x)+1<2π
0≤2sin(3x)+1:−18π​+32π​n≤x≤187π​+32π​n
0≤2sin(3x)+1
Switch sides2sin(3x)+1≥0
Move 1to the right side
2sin(3x)+1≥0
Subtract 1 from both sides2sin(3x)+1−1≥0−1
Simplify2sin(3x)≥−1
2sin(3x)≥−1
Divide both sides by 2
2sin(3x)≥−1
Divide both sides by 222sin(3x)​≥2−1​
Simplifysin(3x)≥−21​
sin(3x)≥−21​
For sin(x)≥a, if −1<a<1 then arcsin(a)+2πn≤x≤π−arcsin(a)+2πnarcsin(−21​)+2πn≤3x≤π−arcsin(−21​)+2πn
If a≤u≤bthen a≤uandu≤barcsin(−21​)+2πn≤3xand3x≤π−arcsin(−21​)+2πn
arcsin(−21​)+2πn≤3x:x≥−18π​+32πn​
arcsin(−21​)+2πn≤3x
Switch sides3x≥arcsin(−21​)+2πn
Simplify arcsin(−21​)+2πn:−6π​+2πn
arcsin(−21​)+2πn
arcsin(−21​)=−6π​
arcsin(−21​)
Use the following property: arcsin(−x)=−arcsin(x)arcsin(−21​)=−arcsin(21​)=−arcsin(21​)
Use the following trivial identity:arcsin(21​)=6π​
arcsin(21​)
x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​
=6π​
=−6π​
=−6π​+2πn
3x≥−6π​+2πn
Divide both sides by 3
3x≥−6π​+2πn
Divide both sides by 333x​≥−36π​​+32πn​
Simplify
33x​≥−36π​​+32πn​
Simplify 33x​:x
33x​
Divide the numbers: 33​=1=x
Simplify −36π​​+32πn​:−18π​+32πn​
−36π​​+32πn​
36π​​=18π​
36π​​
Apply the fraction rule: acb​​=c⋅ab​=6⋅3π​
Multiply the numbers: 6⋅3=18=18π​
=−18π​+32πn​
x≥−18π​+32πn​
x≥−18π​+32πn​
x≥−18π​+32πn​
3x≤π−arcsin(−21​)+2πn:x≤187π​+32π​n
3x≤π−arcsin(−21​)+2πn
Simplify π−arcsin(−21​)+2πn:π+6π​+2πn
π−arcsin(−21​)+2πn
arcsin(−21​)=−6π​
arcsin(−21​)
Use the following property: arcsin(−x)=−arcsin(x)arcsin(−21​)=−arcsin(21​)=−arcsin(21​)
Use the following trivial identity:arcsin(21​)=6π​
arcsin(21​)
x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​
=6π​
=−6π​
=π−(−6π​)+2πn
Apply rule −(−a)=a=π+6π​+2πn
3x≤π+6π​+2πn
Divide both sides by 3
3x≤π+6π​+2πn
Divide both sides by 333x​≤3π​+36π​​+32πn​
Simplify
33x​≤3π​+36π​​+32πn​
Simplify 33x​:x
33x​
Divide the numbers: 33​=1=x
Simplify 3π​+36π​​+32πn​:3π​+18π​+32πn​
3π​+36π​​+32πn​
36π​​=18π​
36π​​
Apply the fraction rule: acb​​=c⋅ab​=6⋅3π​
Multiply the numbers: 6⋅3=18=18π​
=3π​+18π​+32πn​
x≤3π​+18π​+32πn​
x≤3π​+18π​+32πn​
Simplify 3π​+18π​:187π​
3π​+18π​
Least Common Multiplier of 3,18:18
3,18
Least Common Multiplier (LCM)
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Prime factorization of 18:2⋅3⋅3
18
18divides by 218=9⋅2=2⋅9
9divides by 39=3⋅3=2⋅3⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3⋅3
Multiply each factor the greatest number of times it occurs in either 3 or 18=3⋅3⋅2
Multiply the numbers: 3⋅3⋅2=18=18
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 18
For 3π​:multiply the denominator and numerator by 63π​=3⋅6π6​=18π6​
=18π6​+18π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=18π6+π​
Add similar elements: 6π+π=7π=187π​
x≤187π​+32π​n
x≤187π​+32π​n
Combine the intervalsx≥−18π​+32πn​andx≤187π​+32π​n
Merge Overlapping Intervals−18π​+32π​n≤x≤187π​+32π​n
2sin(3x)+1<2π:True for all x∈R
2sin(3x)+1<2π
Move 1to the right side
2sin(3x)+1<2π
Subtract 1 from both sides2sin(3x)+1−1<2π−1
Simplify2sin(3x)<2π−1
2sin(3x)<2π−1
Divide both sides by 2
2sin(3x)<2π−1
Divide both sides by 222sin(3x)​<22π​−21​
Simplify
22sin(3x)​<22π​−21​
Simplify 22sin(3x)​:sin(3x)
22sin(3x)​
Divide the numbers: 22​=1=sin(3x)
Simplify 22π​−21​:22π−1​
22π​−21​
Apply rule ca​±cb​=ca±b​=22π−1​
sin(3x)<22π−1​
sin(3x)<22π−1​
sin(3x)<22π−1​
Range of sin(3x):−1≤sin(3x)≤1
Function range definition
The range of the basic sinfunction is −1≤sin(3x)≤1−1≤sin(3x)≤1
sin(3x)<22π−1​and−1≤sin(3x)≤1:−1≤sin(3x)≤1
Let y=sin(3x)
Combine the intervalsy<22π−1​and−1≤y≤1
Merge Overlapping Intervals
y<22π−1​and−1≤y≤1
The intersection of two intervals is the set of numbers which are in both intervals
y<22π−1​and−1≤y≤1
−1≤y≤1
−1≤y≤1
Trueforallx
Trueforallx∈R
Combine the intervals−18π​+32π​n≤x≤187π​+32π​nandTrueforallx∈R
Merge Overlapping Intervals−18π​+32π​n≤x≤187π​+32π​n

Popular Examples

tan(-pi/4)<= tan(a/2)<= tan(pi/4)sqrt((1+cos(θ))^2+(sin(θ))^2)0<= θ<= 2pi0<sin(x+pi/3)<2pi-pi/2 <arctan(x)< pi/20<sin(2x)<2sqrt(2)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024