Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan(-pi/4)<= tan(a/2)<= tan(pi/4)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan(−4π​)≤tan(2a​)≤tan(4π​)

Solution

2πn≤a≤2π​+2πnor23π​+2πn≤a<2π+2πn
+2
Interval Notation
[2πn,2π​+2πn]∪[23π​+2πn,2π+2πn)
Decimal
2πn≤a≤1.57079…+2πnor4.71238…+2πn≤a<6.28318…+2πn
Solution steps
tan(−4π​)≤tan(2a​)≤tan(4π​)
If a≤u≤bthen a≤uandu≤btan(−4π​)≤tan(2a​)andtan(2a​)≤tan(4π​)
tan(−4π​)≤tan(2a​):−2π​+2πn≤a<π+2πn
tan(−4π​)≤tan(2a​)
Switch sidestan(2a​)≥tan(−4π​)
Simplify tan(−4π​):−1
tan(−4π​)
Use the following property: tan(−x)=−tan(x)tan(−4π​)=−tan(4π​)=−tan(4π​)
Use the following trivial identity:tan(4π​)=1
tan(4π​)
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
=1
=−1
If tan(x)≥athen arctan(a)+πn≤x<2π​+πnarctan(−1)+πn≤2a​<2π​+πn
If a≤u<bthen a≤uandu<barctan(−1)+πn≤2a​and2a​<2π​+πn
arctan(−1)+πn≤2a​:a≥−2π​+2πn
arctan(−1)+πn≤2a​
Switch sides2a​≥arctan(−1)+πn
Simplify arctan(−1)+πn:−4π​+πn
arctan(−1)+πn
arctan(−1)=−4π​
arctan(−1)
Use the following property: arctan(−x)=−arctan(x)arctan(−1)=−arctan(1)=−arctan(1)
Use the following trivial identity:arctan(1)=4π​
arctan(1)
x033​​13​​arctan(x)06π​4π​3π​​arctan(x)0∘30∘45∘60∘​​
=4π​
=−4π​
=−4π​+πn
2a​≥−4π​+πn
Multiply both sides by 2
2a​≥−4π​+πn
Multiply both sides by 222a​≥−2⋅4π​+2πn
Simplify
22a​≥−2⋅4π​+2πn
Simplify 22a​:a
22a​
Divide the numbers: 22​=1=a
Simplify −2⋅4π​+2πn:−2π​+2πn
−2⋅4π​+2πn
2⋅4π​=2π​
2⋅4π​
Multiply fractions: a⋅cb​=ca⋅b​=4π2​
Cancel the common factor: 2=2π​
=−2π​+2πn
a≥−2π​+2πn
a≥−2π​+2πn
a≥−2π​+2πn
2a​<2π​+πn:a<π+2πn
2a​<2π​+πn
Multiply both sides by 2
2a​<2π​+πn
Multiply both sides by 222a​<2⋅2π​+2πn
Simplify
22a​<2⋅2π​+2πn
Simplify 22a​:a
22a​
Divide the numbers: 22​=1=a
Simplify 2⋅2π​+2πn:π+2πn
2⋅2π​+2πn
2⋅2π​=π
2⋅2π​
Multiply fractions: a⋅cb​=ca⋅b​=2π2​
Cancel the common factor: 2=π
=π+2πn
a<π+2πn
a<π+2πn
a<π+2πn
Combine the intervalsa≥−2π​+2πnanda<π+2πn
Merge Overlapping Intervals−2π​+2πn≤a<π+2πn
tan(2a​)≤tan(4π​):−π+2πn<a≤2π​+2πn
tan(2a​)≤tan(4π​)
Use the following trivial identity:tan(4π​)=1
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
tan(2a​)≤1
If tan(x)≤athen −2π​+πn<x≤arctan(a)+πn−2π​+πn<2a​≤arctan(1)+πn
If a<u≤bthen a<uandu≤b−2π​+πn<2a​and2a​≤arctan(1)+πn
−2π​+πn<2a​:a>−π+2πn
−2π​+πn<2a​
Switch sides2a​>−2π​+πn
Multiply both sides by 2
2a​>−2π​+πn
Multiply both sides by 222a​>−2⋅2π​+2πn
Simplify
22a​>−2⋅2π​+2πn
Simplify 22a​:a
22a​
Divide the numbers: 22​=1=a
Simplify −2⋅2π​+2πn:−π+2πn
−2⋅2π​+2πn
2⋅2π​=π
2⋅2π​
Multiply fractions: a⋅cb​=ca⋅b​=2π2​
Cancel the common factor: 2=π
=−π+2πn
a>−π+2πn
a>−π+2πn
a>−π+2πn
2a​≤arctan(1)+πn:a≤2π​+2πn
2a​≤arctan(1)+πn
Simplify arctan(1)+πn:4π​+πn
arctan(1)+πn
Use the following trivial identity:arctan(1)=4π​x033​​13​​arctan(x)06π​4π​3π​​arctan(x)0∘30∘45∘60∘​​=4π​+πn
2a​≤4π​+πn
Multiply both sides by 2
2a​≤4π​+πn
Multiply both sides by 222a​≤2⋅4π​+2πn
Simplify
22a​≤2⋅4π​+2πn
Simplify 22a​:a
22a​
Divide the numbers: 22​=1=a
Simplify 2⋅4π​+2πn:2π​+2πn
2⋅4π​+2πn
2⋅4π​=2π​
2⋅4π​
Multiply fractions: a⋅cb​=ca⋅b​=4π2​
Cancel the common factor: 2=2π​
=2π​+2πn
a≤2π​+2πn
a≤2π​+2πn
a≤2π​+2πn
Combine the intervalsa>−π+2πnanda≤2π​+2πn
Merge Overlapping Intervals−π+2πn<a≤2π​+2πn
Combine the intervals−2π​+2πn≤a<π+2πnand−π+2πn<a≤2π​+2πn
Merge Overlapping Intervals2πn≤a≤2π​+2πnor23π​+2πn≤a<2π+2πn

Popular Examples

sqrt((1+cos(θ))^2+(sin(θ))^2)0<= θ<= 2pi0<sin(x+pi/3)<2pi-pi/2 <arctan(x)< pi/20<sin(2x)<2sqrt(2)sin(t)<0\land cos(t)>0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024