解答
6193cos(x)+2880cos(2x)=0
解答
x=1.21251…+2πn,x=2π−1.21251…+2πn
+1
度数
x=69.47171…∘+360∘n,x=290.52828…∘+360∘n求解步骤
6193cos(x)+2880cos(2x)=0
使用三角恒等式改写
2880cos(2x)+6193cos(x)
使用倍角公式: cos(2x)=2cos2(x)−1=2880(2cos2(x)−1)+6193cos(x)
(−1+2cos2(x))⋅2880+6193cos(x)=0
用替代法求解
(−1+2cos2(x))⋅2880+6193cos(x)=0
令:cos(x)=u(−1+2u2)⋅2880+6193u=0
(−1+2u2)⋅2880+6193u=0:u=11520−6193+104708449,u=11520−6193−104708449
(−1+2u2)⋅2880+6193u=0
展开 (−1+2u2)⋅2880+6193u:−2880+5760u2+6193u
(−1+2u2)⋅2880+6193u
=2880(−1+2u2)+6193u
乘开 2880(−1+2u2):−2880+5760u2
2880(−1+2u2)
使用分配律: a(b+c)=ab+aca=2880,b=−1,c=2u2=2880(−1)+2880⋅2u2
使用加减运算法则+(−a)=−a=−2880⋅1+2880⋅2u2
化简 −2880⋅1+2880⋅2u2:−2880+5760u2
−2880⋅1+2880⋅2u2
数字相乘:2880⋅1=2880=−2880+2880⋅2u2
数字相乘:2880⋅2=5760=−2880+5760u2
=−2880+5760u2
=−2880+5760u2+6193u
−2880+5760u2+6193u=0
两边除以 5760−57602880+57605760u2+57606193u=57600
改写成标准形式 ax2+bx+c=0u2+57606193u−21=0
使用求根公式求解
u2+57606193u−21=0
二次方程求根公式:
若 a=1,b=57606193,c=−21u1,2=2⋅1−57606193±(57606193)2−4⋅1⋅(−21)
u1,2=2⋅1−57606193±(57606193)2−4⋅1⋅(−21)
(57606193)2−4⋅1⋅(−21)=5760104708449
(57606193)2−4⋅1⋅(−21)
使用法则 −(−a)=a=(57606193)2+4⋅1⋅21
(57606193)2=5760261932
(57606193)2
使用指数法则: (ba)c=bcac=5760261932
4⋅1⋅21=2
4⋅1⋅21
分式相乘: a⋅cb=ca⋅b=1⋅21⋅4
21⋅4=2
21⋅4
数字相乘:1⋅4=4=24
数字相除:24=2=2
=1⋅2
数字相乘:1⋅2=2=2
=5760261932+2
5760261932=3317760038353249
5760261932
61932=38353249=5760238353249
57602=33177600=3317760038353249
=3317760038353249+2
化简 3317760038353249+2:33177600104708449
3317760038353249+2
将项转换为分式: 2=331776002⋅33177600=331776002⋅33177600+3317760038353249
因为分母相等,所以合并分式: ca±cb=ca±b=331776002⋅33177600+38353249
2⋅33177600+38353249=104708449
2⋅33177600+38353249
数字相乘:2⋅33177600=66355200=66355200+38353249
数字相加:66355200+38353249=104708449=104708449
=33177600104708449
=33177600104708449
使用根式运算法则: nba=nbna, 假定 a≥0,b≥0=33177600104708449
33177600=5760
33177600
因式分解数字: 33177600=57602=57602
使用根式运算法则: nan=a57602=5760=5760
=5760104708449
u1,2=2⋅1−57606193±5760104708449
将解分隔开u1=2⋅1−57606193+5760104708449,u2=2⋅1−57606193−5760104708449
u=2⋅1−57606193+5760104708449:11520−6193+104708449
2⋅1−57606193+5760104708449
合并分式 −57606193+5760104708449:5760−6193+104708449
使用法则 ca±cb=ca±b=5760−6193+104708449
=2⋅15760−6193+104708449
数字相乘:2⋅1=2=25760−6193+104708449
使用分式法则: acb=c⋅ab=5760⋅2−6193+104708449
数字相乘:5760⋅2=11520=11520−6193+104708449
u=2⋅1−57606193−5760104708449:11520−6193−104708449
2⋅1−57606193−5760104708449
合并分式 −57606193−5760104708449:5760−6193−104708449
使用法则 ca±cb=ca±b=5760−6193−104708449
=2⋅15760−6193−104708449
数字相乘:2⋅1=2=25760−6193−104708449
使用分式法则: acb=c⋅ab=5760⋅2−6193−104708449
数字相乘:5760⋅2=11520=11520−6193−104708449
二次方程组的解是:u=11520−6193+104708449,u=11520−6193−104708449
u=cos(x)代回cos(x)=11520−6193+104708449,cos(x)=11520−6193−104708449
cos(x)=11520−6193+104708449,cos(x)=11520−6193−104708449
cos(x)=11520−6193+104708449:x=arccos(11520−6193+104708449)+2πn,x=2π−arccos(11520−6193+104708449)+2πn
cos(x)=11520−6193+104708449
使用反三角函数性质
cos(x)=11520−6193+104708449
cos(x)=11520−6193+104708449的通解cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnx=arccos(11520−6193+104708449)+2πn,x=2π−arccos(11520−6193+104708449)+2πn
x=arccos(11520−6193+104708449)+2πn,x=2π−arccos(11520−6193+104708449)+2πn
cos(x)=11520−6193−104708449:无解
cos(x)=11520−6193−104708449
−1≤cos(x)≤1无解
合并所有解x=arccos(11520−6193+104708449)+2πn,x=2π−arccos(11520−6193+104708449)+2πn
以小数形式表示解x=1.21251…+2πn,x=2π−1.21251…+2πn