Lösungen
Integrale RechnerAbleitung RechnerAlgebra RechnerMatrix RechnerMehr...
Grafiken
LiniendiagrammExponentieller GraphQuadratischer GraphSinusdiagrammMehr...
Rechner
BMI-RechnerZinseszins-RechnerProzentrechnerBeschleunigungsrechnerMehr...
Geometrie
Satz des Pythagoras-RechnerKreis Fläche RechnerGleichschenkliges Dreieck RechnerDreiecke RechnerMehr...
AI Chat
Werkzeuge
NotizbuchGruppenSpickzettelArbeitsblätterÜbungenÜberprüfe
de
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Beliebt Trigonometrie >

sin(3x+pi/4)=(sqrt(3))/2

  • Voralgebra
  • Algebra
  • Vorkalkül
  • Rechnen
  • Funktionen
  • Lineare Algebra
  • Trigonometrie
  • Statistik
  • Chemie
  • Ökonomie
  • Umrechnungen

Lösung

sin(3x+4π​)=23​​

Lösung

x=32πn​+36π​,x=32πn​+365π​
+1
Grad
x=5∘+120∘n,x=25∘+120∘n
Schritte zur Lösung
sin(3x+4π​)=23​​
Allgemeine Lösung für sin(3x+4π​)=23​​
sin(x) Periodizitätstabelle mit 2πn Zyklus:
3x+4π​=3π​+2πn,3x+4π​=32π​+2πn
3x+4π​=3π​+2πn,3x+4π​=32π​+2πn
Löse 3x+4π​=3π​+2πn:x=32πn​+36π​
3x+4π​=3π​+2πn
Verschiebe 4π​auf die rechte Seite
3x+4π​=3π​+2πn
Subtrahiere 4π​ von beiden Seiten3x+4π​−4π​=3π​+2πn−4π​
Vereinfache
3x+4π​−4π​=3π​+2πn−4π​
Vereinfache 3x+4π​−4π​:3x
3x+4π​−4π​
Addiere gleiche Elemente: 4π​−4π​=0
=3x
Vereinfache 3π​+2πn−4π​:2πn+12π​
3π​+2πn−4π​
Fasse gleiche Terme zusammen=2πn+3π​−4π​
kleinstes gemeinsames Vielfache von3,4:12
3,4
kleinstes gemeinsams Vielfaches (kgV)
Primfaktorzerlegung von 3:3
3
3 ist eine Primzahl, deshalb ist keine Faktorisierung möglich =3
Primfaktorzerlegung von 4:2⋅2
4
4ist durch 24=2⋅2teilbar=2⋅2
Multipliziere jeden Faktor mit der Anzahl wie häufig er in 3 oder 4vorkommt=3⋅2⋅2
Multipliziere die Zahlen: 3⋅2⋅2=12=12
Passe die Brüche mit Hilfe des kgV an
Multipliziere jeden Zähler mit der gleichen Betrag, die für den entsprechenden Nenner erforderlich ist,
um ihn in das kgV umzuwandeln 12
Für 3π​:multipliziere den Nenner und Zähler mit 43π​=3⋅4π4​=12π4​
Für 4π​:multipliziere den Nenner und Zähler mit 34π​=4⋅3π3​=12π3​
=12π4​−12π3​
Da die Nenner gleich sind, fasse die Brüche zusammen.: ca​±cb​=ca±b​=12π4−π3​
Addiere gleiche Elemente: 4π−3π=π=2πn+12π​
3x=2πn+12π​
3x=2πn+12π​
3x=2πn+12π​
Teile beide Seiten durch 3
3x=2πn+12π​
Teile beide Seiten durch 333x​=32πn​+312π​​
Vereinfache
33x​=32πn​+312π​​
Vereinfache 33x​:x
33x​
Teile die Zahlen: 33​=1=x
Vereinfache 32πn​+312π​​:32πn​+36π​
32πn​+312π​​
312π​​=36π​
312π​​
Wende Bruchregel an: acb​​=c⋅ab​=12⋅3π​
Multipliziere die Zahlen: 12⋅3=36=36π​
=32πn​+36π​
x=32πn​+36π​
x=32πn​+36π​
x=32πn​+36π​
Löse 3x+4π​=32π​+2πn:x=32πn​+365π​
3x+4π​=32π​+2πn
Verschiebe 4π​auf die rechte Seite
3x+4π​=32π​+2πn
Subtrahiere 4π​ von beiden Seiten3x+4π​−4π​=32π​+2πn−4π​
Vereinfache
3x+4π​−4π​=32π​+2πn−4π​
Vereinfache 3x+4π​−4π​:3x
3x+4π​−4π​
Addiere gleiche Elemente: 4π​−4π​=0
=3x
Vereinfache 32π​+2πn−4π​:2πn+125π​
32π​+2πn−4π​
Fasse gleiche Terme zusammen=2πn−4π​+32π​
kleinstes gemeinsames Vielfache von4,3:12
4,3
kleinstes gemeinsams Vielfaches (kgV)
Primfaktorzerlegung von 4:2⋅2
4
4ist durch 24=2⋅2teilbar=2⋅2
Primfaktorzerlegung von 3:3
3
3 ist eine Primzahl, deshalb ist keine Faktorisierung möglich =3
Multipliziere jeden Faktor mit der Anzahl wie häufig er in 4 oder 3vorkommt=2⋅2⋅3
Multipliziere die Zahlen: 2⋅2⋅3=12=12
Passe die Brüche mit Hilfe des kgV an
Multipliziere jeden Zähler mit der gleichen Betrag, die für den entsprechenden Nenner erforderlich ist,
um ihn in das kgV umzuwandeln 12
Für 4π​:multipliziere den Nenner und Zähler mit 34π​=4⋅3π3​=12π3​
Für 32π​:multipliziere den Nenner und Zähler mit 432π​=3⋅42π4​=128π​
=−12π3​+128π​
Da die Nenner gleich sind, fasse die Brüche zusammen.: ca​±cb​=ca±b​=12−π3+8π​
Addiere gleiche Elemente: −3π+8π=5π=2πn+125π​
3x=2πn+125π​
3x=2πn+125π​
3x=2πn+125π​
Teile beide Seiten durch 3
3x=2πn+125π​
Teile beide Seiten durch 333x​=32πn​+3125π​​
Vereinfache
33x​=32πn​+3125π​​
Vereinfache 33x​:x
33x​
Teile die Zahlen: 33​=1=x
Vereinfache 32πn​+3125π​​:32πn​+365π​
32πn​+3125π​​
3125π​​=365π​
3125π​​
Wende Bruchregel an: acb​​=c⋅ab​=12⋅35π​
Multipliziere die Zahlen: 12⋅3=36=365π​
=32πn​+365π​
x=32πn​+365π​
x=32πn​+365π​
x=32πn​+365π​
x=32πn​+36π​,x=32πn​+365π​

Graph

Sorry, your browser does not support this application
Interaktives Diagramm anzeigen

Beliebte Beispiele

-2cos(x)=sin(x)−2cos(x)=sin(x)sin(x)=-0.9781sin(x)=−0.9781tan(x)=3.73tan(x)=3.73tan(θ)=-2/5 ,sin(θ)>0tan(θ)=−52​,sin(θ)>0solvefor x,z=cot(4x^3y^6-4x^4)solveforx,z=cot(4x3y6−4x4)
LernwerkzeugeKI-Mathe-LöserAI ChatArbeitsblätterÜbungenSpickzettelRechnerGrafikrechnerGeometrie-RechnerLösung überprüfen
AppsSymbolab App (Android)Grafikrechner (Android)Übungen (Android)Symbolab App (iOS)Grafikrechner (iOS)Übungen (iOS)Chrome-Erweiterung
UnternehmenÜber SymbolabBlogHilfe
LegalDatenschutzbestimmungenService TermsCookiesCookie-EinstellungenVerkaufen oder teilen Sie meine persönlichen Daten nichtUrheberrecht, Community-Richtlinien, DSA und andere rechtliche RessourcenLearneo Rechtszentrum
Soziale Medien
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024