Lösungen
Integrale RechnerAbleitung RechnerAlgebra RechnerMatrix RechnerMehr...
Grafiken
LiniendiagrammExponentieller GraphQuadratischer GraphSinusdiagrammMehr...
Rechner
BMI-RechnerZinseszins-RechnerProzentrechnerBeschleunigungsrechnerMehr...
Geometrie
Satz des Pythagoras-RechnerKreis Fläche RechnerGleichschenkliges Dreieck RechnerDreiecke RechnerMehr...
AI Chat
Werkzeuge
NotizbuchGruppenSpickzettelArbeitsblätterÜbungenÜberprüfe
de
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Beliebt Trigonometrie >

sin^2(θ)=cos(θ)+cos^2(θ)

  • Voralgebra
  • Algebra
  • Vorkalkül
  • Rechnen
  • Funktionen
  • Lineare Algebra
  • Trigonometrie
  • Statistik
  • Chemie
  • Ökonomie
  • Umrechnungen

Lösung

sin2(θ)=cos(θ)+cos2(θ)

Lösung

θ=π+2πn,θ=3π​+2πn,θ=35π​+2πn
+1
Grad
θ=180∘+360∘n,θ=60∘+360∘n,θ=300∘+360∘n
Schritte zur Lösung
sin2(θ)=cos(θ)+cos2(θ)
Subtrahiere cos(θ)+cos2(θ) von beiden Seitensin2(θ)−cos(θ)−cos2(θ)=0
Umschreiben mit Hilfe von Trigonometrie-Identitäten
−cos(θ)−cos2(θ)+sin2(θ)
Verwende die Pythagoreische Identität: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=−cos(θ)−cos2(θ)+1−cos2(θ)
Vereinfache −cos(θ)−cos2(θ)+1−cos2(θ):−cos(θ)−2cos2(θ)+1
−cos(θ)−cos2(θ)+1−cos2(θ)
Fasse gleiche Terme zusammen=−cos(θ)−cos2(θ)−cos2(θ)+1
Addiere gleiche Elemente: −cos2(θ)−cos2(θ)=−2cos2(θ)=−cos(θ)−2cos2(θ)+1
=−cos(θ)−2cos2(θ)+1
1−cos(θ)−2cos2(θ)=0
Löse mit Substitution
1−cos(θ)−2cos2(θ)=0
Angenommen: cos(θ)=u1−u−2u2=0
1−u−2u2=0:u=−1,u=21​
1−u−2u2=0
Schreibe in der Standard Form ax2+bx+c=0−2u2−u+1=0
Löse mit der quadratischen Formel
−2u2−u+1=0
Quadratische Formel für Gliechungen:
Für a=−2,b=−1,c=1u1,2​=2(−2)−(−1)±(−1)2−4(−2)⋅1​​
u1,2​=2(−2)−(−1)±(−1)2−4(−2)⋅1​​
(−1)2−4(−2)⋅1​=3
(−1)2−4(−2)⋅1​
Wende Regel an −(−a)=a=(−1)2+4⋅2⋅1​
(−1)2=1
(−1)2
Wende Exponentenregel an: (−a)n=an,wenn n gerade ist(−1)2=12=12
Wende Regel an 1a=1=1
4⋅2⋅1=8
4⋅2⋅1
Multipliziere die Zahlen: 4⋅2⋅1=8=8
=1+8​
Addiere die Zahlen: 1+8=9=9​
Faktorisiere die Zahl: 9=32=32​
Wende Radikal Regel an: nan​=a32​=3=3
u1,2​=2(−2)−(−1)±3​
Trenne die Lösungenu1​=2(−2)−(−1)+3​,u2​=2(−2)−(−1)−3​
u=2(−2)−(−1)+3​:−1
2(−2)−(−1)+3​
Entferne die Klammern: (−a)=−a,−(−a)=a=−2⋅21+3​
Addiere die Zahlen: 1+3=4=−2⋅24​
Multipliziere die Zahlen: 2⋅2=4=−44​
Wende Bruchregel an: −ba​=−ba​=−44​
Wende Regel an aa​=1=−1
u=2(−2)−(−1)−3​:21​
2(−2)−(−1)−3​
Entferne die Klammern: (−a)=−a,−(−a)=a=−2⋅21−3​
Subtrahiere die Zahlen: 1−3=−2=−2⋅2−2​
Multipliziere die Zahlen: 2⋅2=4=−4−2​
Wende Bruchregel an: −b−a​=ba​=42​
Streiche die gemeinsamen Faktoren: 2=21​
Die Lösungen für die quadratische Gleichung sind: u=−1,u=21​
Setze in u=cos(θ)eincos(θ)=−1,cos(θ)=21​
cos(θ)=−1,cos(θ)=21​
cos(θ)=−1:θ=π+2πn
cos(θ)=−1
Allgemeine Lösung für cos(θ)=−1
cos(x) Periodizitätstabelle mit 2πn Zyklus:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
θ=π+2πn
θ=π+2πn
cos(θ)=21​:θ=3π​+2πn,θ=35π​+2πn
cos(θ)=21​
Allgemeine Lösung für cos(θ)=21​
cos(x) Periodizitätstabelle mit 2πn Zyklus:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
θ=3π​+2πn,θ=35π​+2πn
θ=3π​+2πn,θ=35π​+2πn
Kombiniere alle Lösungenθ=π+2πn,θ=3π​+2πn,θ=35π​+2πn

Graph

Sorry, your browser does not support this application
Interaktives Diagramm anzeigen

Beliebte Beispiele

7cos(θ)=sqrt(2)+9cos(θ)7cos(θ)=2​+9cos(θ)sec(x)*cot(x)-2cot(x)+sec(x)=2sec(x)⋅cot(x)−2cot(x)+sec(x)=23sin^2(x)-10sin(x)-8=03sin2(x)−10sin(x)−8=0cos(7x)=sin(4x+2)cos(7x)=sin(4x+2)12cos(β)-5sin(β)=4.712cos(β)−5sin(β)=4.7
LernwerkzeugeKI-Mathe-LöserAI ChatArbeitsblätterÜbungenSpickzettelRechnerGrafikrechnerGeometrie-RechnerLösung überprüfen
AppsSymbolab App (Android)Grafikrechner (Android)Übungen (Android)Symbolab App (iOS)Grafikrechner (iOS)Übungen (iOS)Chrome-Erweiterung
UnternehmenÜber SymbolabBlogHilfe
LegalDatenschutzbestimmungenService TermsCookiesCookie-EinstellungenVerkaufen oder teilen Sie meine persönlichen Daten nichtUrheberrecht, Community-Richtlinien, DSA und andere rechtliche RessourcenLearneo Rechtszentrum
Soziale Medien
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024