Решения
Калькулятор Интегралов (Первообразной Функции)Калькулятор ПроизводныхАлгебраический КалькуляторКалькулятор МатрицДополнительные инструменты...
Графика
Линейный графикЭкспоненциальный графикКвадратичный графикГрафик синусаДополнительные инструменты...
Калькуляторы
Калькулятор ИМТКалькулятор сложных процентовКалькулятор процентовКалькулятор ускоренияДополнительные инструменты...
Геометрия
Калькулятор теоремы ПифагораКалькулятор Площади ОкружностиКалькулятор равнобедренного треугольникаКалькулятор треугольниковДополнительные инструменты...
AI Chat
Инструменты
БлокнотыГруппыШпаргалкиРабочие листыУпражнятьсяПодтвердить
ru
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Популярное Тригонометрия >

sin(θ)+cos(θ)=(sqrt(3))/2

  • Пре Алгебра
  • Алгебра
  • Пре Исчисление
  • Исчисление
  • Функции
  • Линейная алгебра
  • Тригонометрия
  • Статистика
  • Химия
  • Экономика
  • Преобразования

Решение

sin(θ)+cos(θ)=23​​

Решение

θ=0.65905…+2πn−4π​,θ=π−0.65905…+2πn−4π​
+1
Градусы
θ=−7.23875…∘+360∘n,θ=97.23875…∘+360∘n
Шаги решения
sin(θ)+cos(θ)=23​​
Перепишите используя тригонометрические тождества
sin(θ)+cos(θ)
sin(θ)+cos(θ)=2​sin(θ+4π​)
sin(θ)+cos(θ)
Перепишите как=2​(2​1​sin(θ)+2​1​cos(θ))
Используйте следующее тривиальное тождество: cos(4π​)=2​1​Используйте следующее тривиальное тождество: sin(4π​)=2​1​=2​(cos(4π​)sin(θ)+sin(4π​)cos(θ))
Используйте тождество суммы углов: sin(s+t)=sin(s)cos(t)+cos(s)sin(t)=2​sin(θ+4π​)
=2​sin(θ+4π​)
2​sin(θ+4π​)=23​​
Разделите обе стороны на 2​
2​sin(θ+4π​)=23​​
Разделите обе стороны на 2​2​2​sin(θ+4π​)​=2​23​​​
После упрощения получаем
2​2​sin(θ+4π​)​=2​23​​​
Упростите 2​2​sin(θ+4π​)​:sin(θ+4π​)
2​2​sin(θ+4π​)​
Отмените общий множитель: 2​=sin(θ+4π​)
Упростите 2​23​​​:46​​
2​23​​​
Примените правило дробей: acb​​=c⋅ab​=22​3​​
Рационализируйте 22​3​​:46​​
22​3​​
Умножить на сопряженное 2​2​​=22​2​3​2​​
3​2​=6​
3​2​
Примените правило радикалов: a​b​=a⋅b​3​2​=3⋅2​=3⋅2​
Перемножьте числа: 3⋅2=6=6​
22​2​=4
22​2​
Примените правило возведения в степень: ab⋅ac=ab+c22​2​=2⋅221​⋅221​=21+21​+21​=21+21​+21​
Добавьте похожие элементы: 21​+21​=2⋅21​=21+2⋅21​
2⋅21​=1
2⋅21​
Умножьте дроби: a⋅cb​=ca⋅b​=21⋅2​
Отмените общий множитель: 2=1
=21+1
Добавьте числа: 1+1=2=22
22=4=4
=46​​
=46​​
sin(θ+4π​)=46​​
sin(θ+4π​)=46​​
sin(θ+4π​)=46​​
Примените обратные тригонометрические свойства
sin(θ+4π​)=46​​
Общие решения для sin(θ+4π​)=46​​sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πnθ+4π​=arcsin(46​​)+2πn,θ+4π​=π−arcsin(46​​)+2πn
θ+4π​=arcsin(46​​)+2πn,θ+4π​=π−arcsin(46​​)+2πn
Решить θ+4π​=arcsin(46​​)+2πn:θ=arcsin(22​3​​)+2πn−4π​
θ+4π​=arcsin(46​​)+2πn
Упростите arcsin(46​​)+2πn:arcsin(22​3​​)+2πn
arcsin(46​​)+2πn
46​​=22​3​​
46​​
коэффициент 6​:2​3​
Найдите множитель 6=2⋅3=2⋅3​
Примените правило радикалов: nab​=na​nb​=2​3​
коэффициент 4:22
Найдите множитель 4=22
=222​3​​
Упраздните 222​3​​:223​3​​
222​3​​
Примените правило радикалов: na​=an1​2​=221​=22221​3​​
Примените правило возведения в степень: xbxa​=xb−a1​22221​​=22−21​1​=22−21​3​​
Вычтите числа: 2−21​=23​=223​3​​
=223​3​​
223​=22​
223​
223​=21+21​=21+21​
Примените правило возведения в степень: xa+b=xaxb=21⋅221​
Уточнить=22​
=22​3​​
=arcsin(22​3​​)+2πn
θ+4π​=arcsin(22​3​​)+2πn
Переместите 4π​вправо
θ+4π​=arcsin(22​3​​)+2πn
Вычтите 4π​ с обеих сторонθ+4π​−4π​=arcsin(22​3​​)+2πn−4π​
После упрощения получаемθ=arcsin(22​3​​)+2πn−4π​
θ=arcsin(22​3​​)+2πn−4π​
Решить θ+4π​=π−arcsin(46​​)+2πn:θ=π−arcsin(22​3​​)+2πn−4π​
θ+4π​=π−arcsin(46​​)+2πn
Упростите π−arcsin(46​​)+2πn:π−arcsin(22​3​​)+2πn
π−arcsin(46​​)+2πn
46​​=22​3​​
46​​
коэффициент 6​:2​3​
Найдите множитель 6=2⋅3=2⋅3​
Примените правило радикалов: nab​=na​nb​=2​3​
коэффициент 4:22
Найдите множитель 4=22
=222​3​​
Упраздните 222​3​​:223​3​​
222​3​​
Примените правило радикалов: na​=an1​2​=221​=22221​3​​
Примените правило возведения в степень: xbxa​=xb−a1​22221​​=22−21​1​=22−21​3​​
Вычтите числа: 2−21​=23​=223​3​​
=223​3​​
223​=22​
223​
223​=21+21​=21+21​
Примените правило возведения в степень: xa+b=xaxb=21⋅221​
Уточнить=22​
=22​3​​
=π−arcsin(22​3​​)+2πn
θ+4π​=π−arcsin(22​3​​)+2πn
Переместите 4π​вправо
θ+4π​=π−arcsin(22​3​​)+2πn
Вычтите 4π​ с обеих сторонθ+4π​−4π​=π−arcsin(22​3​​)+2πn−4π​
После упрощения получаемθ=π−arcsin(22​3​​)+2πn−4π​
θ=π−arcsin(22​3​​)+2πn−4π​
θ=arcsin(22​3​​)+2πn−4π​,θ=π−arcsin(22​3​​)+2πn−4π​
Покажите решения в десятичной формеθ=0.65905…+2πn−4π​,θ=π−0.65905…+2πn−4π​

График

Sorry, your browser does not support this application
Просмотр интерактивного графика

Популярные примеры

sin(x)+pi/2 =cos(x)sin(x)+2π​=cos(x)5cos(x)-3=9cos(x)-55cos(x)−3=9cos(x)−53sin^2(x)-8sin(x)+4=03sin2(x)−8sin(x)+4=03tan(x)=tan(2x)3tan(x)=tan(2x)cos(4x)+sin(6x)=0cos(4x)+sin(6x)=0
Инструменты для обученияИИ Решатель ЗадачAI ChatРабочие листыУпражнятьсяШпаргалкиКалькуляторыГрафический калькуляторКалькулятор по ГеометрииПроверить решение
ПриложенияПриложение Symbolab (Android)Графический калькулятор (Android)Упражняться (Android)Приложение Symbolab (iOS)Графический калькулятор (iOS)Упражняться (iOS)Расширение для Chrome
КомпанияО SymbolabБлогПомощь
ЮридическийКонфиденциальностьService TermsПолитика использованияНастройки файлов cookieНе продавать и не передавать мои личные данныеАвторское право, Правила сообщества, Структуры данных и алгоритмы (DSA) & другие Юридические ресурсыЮридический центр Learneo
Соцсети
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024