Решения
Калькулятор Интегралов (Первообразной Функции)Калькулятор ПроизводныхАлгебраический КалькуляторКалькулятор МатрицДополнительные инструменты...
Графика
Линейный графикЭкспоненциальный графикКвадратичный графикГрафик синусаДополнительные инструменты...
Калькуляторы
Калькулятор ИМТКалькулятор сложных процентовКалькулятор процентовКалькулятор ускоренияДополнительные инструменты...
Геометрия
Калькулятор теоремы ПифагораКалькулятор Площади ОкружностиКалькулятор равнобедренного треугольникаКалькулятор треугольниковДополнительные инструменты...
AI Chat
Инструменты
БлокнотыГруппыШпаргалкиРабочие листыУпражнятьсяПодтвердить
ru
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Популярное Тригонометрия >

sin^2(a)=((2tan(a)))/((1+tan^2(a)))

  • Пре Алгебра
  • Алгебра
  • Пре Исчисление
  • Исчисление
  • Функции
  • Линейная алгебра
  • Тригонометрия
  • Статистика
  • Химия
  • Экономика
  • Преобразования

Решение

sin2(a)=(1+tan2(a))(2tan(a))​

Решение

a=2πn,a=π+2πn,a=1.10714…+πn
+1
Градусы
a=0∘+360∘n,a=180∘+360∘n,a=63.43494…∘+180∘n
Шаги решения
sin2(a)=(1+tan2(a))(2tan(a))​
Вычтите 1+tan2(a)2tan(a)​ с обеих сторонsin2(a)−1+tan2(a)2tan(a)​=0
Упростить sin2(a)−1+tan2(a)2tan(a)​:1+tan2(a)sin2(a)(1+tan2(a))−2tan(a)​
sin2(a)−1+tan2(a)2tan(a)​
Преобразуйте элемент в дробь: sin2(a)=1+tan2(a)sin2(a)(1+tan2(a))​=1+tan2(a)sin2(a)(1+tan2(a))​−1+tan2(a)2tan(a)​
Так как знаменатели равны, сложите дроби: ca​±cb​=ca±b​=1+tan2(a)sin2(a)(1+tan2(a))−2tan(a)​
1+tan2(a)sin2(a)(1+tan2(a))−2tan(a)​=0
g(x)f(x)​=0⇒f(x)=0sin2(a)(1+tan2(a))−2tan(a)=0
Выразите с помощью синуса (sin), косинуса (cos)
(1+tan2(a))sin2(a)−2tan(a)
Испльзуйте основное тригонометрическое тождество: tan(x)=cos(x)sin(x)​=(1+(cos(a)sin(a)​)2)sin2(a)−2⋅cos(a)sin(a)​
Упростить (1+(cos(a)sin(a)​)2)sin2(a)−2⋅cos(a)sin(a)​:cos2(a)sin2(a)(cos2(a)+sin2(a))−2sin(a)cos(a)​
(1+(cos(a)sin(a)​)2)sin2(a)−2⋅cos(a)sin(a)​
(1+(cos(a)sin(a)​)2)sin2(a)=cos2(a)cos2(a)+sin2(a)​sin2(a)
(1+(cos(a)sin(a)​)2)sin2(a)
Примените правило возведения в степень: (ba​)c=bcac​=sin2(a)(cos2(a)sin2(a)​+1)
Присоединить 1+cos2(a)sin2(a)​к одной дроби:cos2(a)cos2(a)+sin2(a)​
1+cos2(a)sin2(a)​
Преобразуйте элемент в дробь: 1=cos2(a)1cos2(a)​=cos2(a)1⋅cos2(a)​+cos2(a)sin2(a)​
Так как знаменатели равны, сложите дроби: ca​±cb​=ca±b​=cos2(a)1⋅cos2(a)+sin2(a)​
Умножьте: 1⋅cos2(a)=cos2(a)=cos2(a)cos2(a)+sin2(a)​
=cos2(a)cos2(a)+sin2(a)​sin2(a)
2⋅cos(a)sin(a)​=cos(a)2sin(a)​
2⋅cos(a)sin(a)​
Умножьте дроби: a⋅cb​=ca⋅b​=cos(a)sin(a)⋅2​
=cos2(a)cos2(a)+sin2(a)​sin2(a)−cos(a)2sin(a)​
Умножьте cos2(a)cos2(a)+sin2(a)​sin2(a):cos2(a)sin2(a)(cos2(a)+sin2(a))​
cos2(a)cos2(a)+sin2(a)​sin2(a)
Умножьте дроби: a⋅cb​=ca⋅b​=cos2(a)(cos2(a)+sin2(a))sin2(a)​
=cos2(a)(cos2(a)+sin2(a))sin2(a)​−cos(a)sin(a)⋅2​
Наименьший Общий Множитель cos2(a),cos(a):cos2(a)
cos2(a),cos(a)
Наименьший Общий Кратный (НОК)
Вычислите выражение, состоящее из факторов, которые появляются либо в cos2(a) либо cos(a)=cos2(a)
Отрегулируйте дроби на основе Наименьшего Общего Кратного (НОК)
Умножьте каждый числитель на такое же число, необходимое для умножения его
соответствующего знаменателя, чтобы превратить его в НОК cos2(a)
Для cos(a)sin(a)⋅2​:умножить знаменатель и числитель на cos(a)cos(a)sin(a)⋅2​=cos(a)cos(a)sin(a)⋅2cos(a)​=cos2(a)sin(a)⋅2cos(a)​
=cos2(a)(cos2(a)+sin2(a))sin2(a)​−cos2(a)sin(a)⋅2cos(a)​
Так как знаменатели равны, сложите дроби: ca​±cb​=ca±b​=cos2(a)(cos2(a)+sin2(a))sin2(a)−sin(a)⋅2cos(a)​
=cos2(a)sin2(a)(cos2(a)+sin2(a))−2sin(a)cos(a)​
cos2(a)(cos2(a)+sin2(a))sin2(a)−2cos(a)sin(a)​=0
g(x)f(x)​=0⇒f(x)=0(cos2(a)+sin2(a))sin2(a)−2cos(a)sin(a)=0
коэффициент (cos2(a)+sin2(a))sin2(a)−2cos(a)sin(a):sin(a)(sin(a)(cos2(a)+sin2(a))−2cos(a))
(cos2(a)+sin2(a))sin2(a)−2cos(a)sin(a)
Примените правило возведения в степень: ab+c=abacsin2(a)=sin(a)sin(a)=(cos2(a)+sin(a)sin(a))sin(a)sin(a)−2cos(a)sin(a)
Убрать общее значение sin(a)=sin(a)((cos2(a)+sin2(a))sin(a)−2cos(a))
sin(a)(sin(a)(cos2(a)+sin2(a))−2cos(a))=0
Перепишите используя тригонометрические тождества
sin(a)(sin(a)(cos2(a)+sin2(a))−2cos(a))
Используйте основное тригонометрическое тождество (тождество Пифагора): cos2(x)+sin2(x)=1=sin(a)(−2cos(a)+sin(a)⋅1)
Упростить sin(a)(−2cos(a)+sin(a)⋅1):sin(a)(−2cos(a)+sin(a))
sin(a)(−2cos(a)+sin(a)⋅1)
Умножьте: sin(a)⋅1=sin(a)=sin(a)(sin(a)−2cos(a))
=sin(a)(−2cos(a)+sin(a))
sin(a)(−2cos(a)+sin(a))=0
Произведите отдельное решение для каждой частиsin(a)=0or−2cos(a)+sin(a)=0
sin(a)=0:a=2πn,a=π+2πn
sin(a)=0
Общие решения для sin(a)=0
sin(x)таблица периодичности с циклом 2πn:
a=0+2πn,a=π+2πn
a=0+2πn,a=π+2πn
Решить a=0+2πn:a=2πn
a=0+2πn
0+2πn=2πna=2πn
a=2πn,a=π+2πn
−2cos(a)+sin(a)=0:a=arctan(2)+πn
−2cos(a)+sin(a)=0
Перепишите используя тригонометрические тождества
−2cos(a)+sin(a)=0
Разделите обе части на cos(a),cos(a)=0cos(a)−2cos(a)+sin(a)​=cos(a)0​
После упрощения получаем−2+cos(a)sin(a)​=0
Испльзуйте основное тригонометрическое тождество: cos(x)sin(x)​=tan(x)−2+tan(a)=0
−2+tan(a)=0
Переместите 2вправо
−2+tan(a)=0
Добавьте 2 к обеим сторонам−2+tan(a)+2=0+2
После упрощения получаемtan(a)=2
tan(a)=2
Примените обратные тригонометрические свойства
tan(a)=2
Общие решения для tan(a)=2tan(x)=a⇒x=arctan(a)+πna=arctan(2)+πn
a=arctan(2)+πn
Объедините все решенияa=2πn,a=π+2πn,a=arctan(2)+πn
Покажите решения в десятичной формеa=2πn,a=π+2πn,a=1.10714…+πn

График

Sorry, your browser does not support this application
Просмотр интерактивного графика

Популярные примеры

(tan(a))/2 = 2/112tan(a)​=112​sin^2(x)-cos(x)= 1/2sin2(x)−cos(x)=21​cos(x)[3sin(x)-2]=0cos(x)[3sin(x)−2]=0sin^3(x)+sin(x)-4=0sin3(x)+sin(x)−4=0solvefor a,sin^2(a)+cos^2(b)=1solvefora,sin2(a)+cos2(b)=1
Инструменты для обученияИИ Решатель ЗадачAI ChatРабочие листыУпражнятьсяШпаргалкиКалькуляторыГрафический калькуляторКалькулятор по ГеометрииПроверить решение
ПриложенияПриложение Symbolab (Android)Графический калькулятор (Android)Упражняться (Android)Приложение Symbolab (iOS)Графический калькулятор (iOS)Упражняться (iOS)Расширение для Chrome
КомпанияО SymbolabБлогПомощь
ЮридическийКонфиденциальностьService TermsПолитика использованияНастройки файлов cookieНе продавать и не передавать мои личные данныеАвторское право, Правила сообщества, Структуры данных и алгоритмы (DSA) & другие Юридические ресурсыЮридический центр Learneo
Соцсети
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024