Solutions
Calculateur d'intégraleCalculateur d'une dérivéeCalculateur d'algèbreCalculateur d'une matricePlus...
Graphisme
Graphique linéaireGraphique exponentielGraphique quadratiqueGraphique de péchéPlus...
Calculateurs
Calculateur d'IMCCalculateur d'intérêts composésCalculateur de pourcentageCalculateur d'accélérationPlus...
Géométrie
Calculateur du théorème de PythagoreCalculateur de l'aire d'un cercleCalculatrice de triangle isocèleCalculateur de trianglesPlus...
AI Chat
Outils
Bloc-noteGroupesAides-mémoireDes feuilles de calculExercicesVérifier
fr
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Populaire Trigonométrie >

(sin^{22}(a))/(sin^2(a))=4-4sin^2(a)

  • Pré-algèbre
  • Algèbre
  • Pré calculs
  • Calculs
  • Fonctions
  • Algèbre linéaire
  • Trigonométrie
  • Statistiques
  • Chimie
  • Economie
  • Conversions

Solution

sin2(a)sin22(a)​=4−4sin2(a)

Solution

a=1.25989…+2πn,a=π−1.25989…+2πn,a=−1.25989…+2πn,a=π+1.25989…+2πn
+1
Degrés
a=72.18663…∘+360∘n,a=107.81336…∘+360∘n,a=−72.18663…∘+360∘n,a=252.18663…∘+360∘n
étapes des solutions
sin2(a)sin22(a)​=4−4sin2(a)
Résoudre par substitution
sin2(a)sin22(a)​=4−4sin2(a)
Soit : sin(a)=uu2u22​=4−4u2
u2u22​=4−4u2:u=0.90641…​,u=−0.90641…​
u2u22​=4−4u2
Simplifier u2u22​:u20
u2u22​
Appliquer la règle de l'exposant: xbxa​=xa−bu2u22​=u22−2=u22−2
Soustraire les nombres : 22−2=20=u20
u20=4−4u2
Résoudre u20=4−4u2:u=0.90641…​,u=−0.90641…​
u20=4−4u2
Déplacer 4u2vers la gauche
u20=4−4u2
Ajouter 4u2 aux deux côtésu20+4u2=4−4u2+4u2
Simplifieru20+4u2=4
u20+4u2=4
Déplacer 4vers la gauche
u20+4u2=4
Soustraire 4 des deux côtésu20+4u2−4=4−4
Simplifieru20+4u2−4=0
u20+4u2−4=0
Récrire l'équation avec v=u2 et v10=u20v10+4v−4=0
Résoudre v10+4v−4=0:v≈0.90641…,v≈−1.24548…
v10+4v−4=0
Trouver une solution pour v10+4v−4=0 par la méthode de Newton-Raphson:v≈0.90641…
v10+4v−4=0
Définition de l'approximation de Newton-Raphson
f(v)=v10+4v−4
Trouver f′(v):10v9+4
dvd​(v10+4v−4)
Appliquer la règle de l'addition/soustraction: (f±g)′=f′±g′=dvd​(v10)+dvd​(4v)−dvd​(4)
dvd​(v10)=10v9
dvd​(v10)
Appliquer la règle de la puissance: dxd​(xa)=a⋅xa−1=10v10−1
Simplifier=10v9
dvd​(4v)=4
dvd​(4v)
Retirer la constante: (a⋅f)′=a⋅f′=4dvdv​
Appliquer la dérivée commune: dvdv​=1=4⋅1
Simplifier=4
dvd​(4)=0
dvd​(4)
Dérivée d'une constante: dxd​(a)=0=0
=10v9+4−0
Simplifier=10v9+4
Soit v0​=1Calculer vn+1​ jusqu'à Δvn+1​<0.000001
v1​=0.92857…:Δv1​=0.07142…
f(v0​)=110+4⋅1−4=1f′(v0​)=10⋅19+4=14v1​=0.92857…
Δv1​=∣0.92857…−1∣=0.07142…Δv1​=0.07142…
v2​=0.90766…:Δv2​=0.02090…
f(v1​)=0.92857…10+4⋅0.92857…−4=0.19088…f′(v1​)=10⋅0.92857…9+4=9.13260…v2​=0.90766…
Δv2​=∣0.90766…−0.92857…∣=0.02090…Δv2​=0.02090…
v3​=0.90641…:Δv3​=0.00125…
f(v2​)=0.90766…10+4⋅0.90766…−4=0.01023…f′(v2​)=10⋅0.90766…9+4=8.18168…v3​=0.90641…
Δv3​=∣0.90641…−0.90766…∣=0.00125…Δv3​=0.00125…
v4​=0.90641…:Δv4​=3.97918E−6
f(v3​)=0.90641…10+4⋅0.90641…−4=0.00003…f′(v3​)=10⋅0.90641…9+4=8.13008…v4​=0.90641…
Δv4​=∣0.90641…−0.90641…∣=3.97918E−6Δv4​=3.97918E−6
v5​=0.90641…:Δv5​=3.99335E−11
f(v4​)=0.90641…10+4⋅0.90641…−4=3.24656E−10f′(v4​)=10⋅0.90641…9+4=8.12992…v5​=0.90641…
Δv5​=∣0.90641…−0.90641…∣=3.99335E−11Δv5​=3.99335E−11
v≈0.90641…
Appliquer une division longue:v−0.90641…v10+4v−4​=v9+0.90641…v8+0.82158…v7+0.74469…v6+0.67500…v5+0.61183…v4+0.55457…v3+0.50267…v2+0.45563…v+4.41299…
v9+0.90641…v8+0.82158…v7+0.74469…v6+0.67500…v5+0.61183…v4+0.55457…v3+0.50267…v2+0.45563…v+4.41299…≈0
Trouver une solution pour v9+0.90641…v8+0.82158…v7+0.74469…v6+0.67500…v5+0.61183…v4+0.55457…v3+0.50267…v2+0.45563…v+4.41299…=0 par la méthode de Newton-Raphson:v≈−1.24548…
v9+0.90641…v8+0.82158…v7+0.74469…v6+0.67500…v5+0.61183…v4+0.55457…v3+0.50267…v2+0.45563…v+4.41299…=0
Définition de l'approximation de Newton-Raphson
f(v)=v9+0.90641…v8+0.82158…v7+0.74469…v6+0.67500…v5+0.61183…v4+0.55457…v3+0.50267…v2+0.45563…v+4.41299…
Trouver f′(v):9v8+7.25131…v7+5.75111…v6+4.46819…v5+3.37502…v4+2.44733…v3+1.66372…v2+1.00535…v+0.45563…
dvd​(v9+0.90641…v8+0.82158…v7+0.74469…v6+0.67500…v5+0.61183…v4+0.55457…v3+0.50267…v2+0.45563…v+4.41299…)
Appliquer la règle de l'addition/soustraction: (f±g)′=f′±g′=dvd​(v9)+dvd​(0.90641…v8)+dvd​(0.82158…v7)+dvd​(0.74469…v6)+dvd​(0.67500…v5)+dvd​(0.61183…v4)+dvd​(0.55457…v3)+dvd​(0.50267…v2)+dvd​(0.45563…v)+dvd​(4.41299…)
dvd​(v9)=9v8
dvd​(v9)
Appliquer la règle de la puissance: dxd​(xa)=a⋅xa−1=9v9−1
Simplifier=9v8
dvd​(0.90641…v8)=7.25131…v7
dvd​(0.90641…v8)
Retirer la constante: (a⋅f)′=a⋅f′=0.90641…dvd​(v8)
Appliquer la règle de la puissance: dxd​(xa)=a⋅xa−1=0.90641…⋅8v8−1
Simplifier=7.25131…v7
dvd​(0.82158…v7)=5.75111…v6
dvd​(0.82158…v7)
Retirer la constante: (a⋅f)′=a⋅f′=0.82158…dvd​(v7)
Appliquer la règle de la puissance: dxd​(xa)=a⋅xa−1=0.82158…⋅7v7−1
Simplifier=5.75111…v6
dvd​(0.74469…v6)=4.46819…v5
dvd​(0.74469…v6)
Retirer la constante: (a⋅f)′=a⋅f′=0.74469…dvd​(v6)
Appliquer la règle de la puissance: dxd​(xa)=a⋅xa−1=0.74469…⋅6v6−1
Simplifier=4.46819…v5
dvd​(0.67500…v5)=3.37502…v4
dvd​(0.67500…v5)
Retirer la constante: (a⋅f)′=a⋅f′=0.67500…dvd​(v5)
Appliquer la règle de la puissance: dxd​(xa)=a⋅xa−1=0.67500…⋅5v5−1
Simplifier=3.37502…v4
dvd​(0.61183…v4)=2.44733…v3
dvd​(0.61183…v4)
Retirer la constante: (a⋅f)′=a⋅f′=0.61183…dvd​(v4)
Appliquer la règle de la puissance: dxd​(xa)=a⋅xa−1=0.61183…⋅4v4−1
Simplifier=2.44733…v3
dvd​(0.55457…v3)=1.66372…v2
dvd​(0.55457…v3)
Retirer la constante: (a⋅f)′=a⋅f′=0.55457…dvd​(v3)
Appliquer la règle de la puissance: dxd​(xa)=a⋅xa−1=0.55457…⋅3v3−1
Simplifier=1.66372…v2
dvd​(0.50267…v2)=1.00535…v
dvd​(0.50267…v2)
Retirer la constante: (a⋅f)′=a⋅f′=0.50267…dvd​(v2)
Appliquer la règle de la puissance: dxd​(xa)=a⋅xa−1=0.50267…⋅2v2−1
Simplifier=1.00535…v
dvd​(0.45563…v)=0.45563…
dvd​(0.45563…v)
Retirer la constante: (a⋅f)′=a⋅f′=0.45563…dvdv​
Appliquer la dérivée commune: dvdv​=1=0.45563…⋅1
Simplifier=0.45563…
dvd​(4.41299…)=0
dvd​(4.41299…)
Dérivée d'une constante: dxd​(a)=0=0
=9v8+7.25131…v7+5.75111…v6+4.46819…v5+3.37502…v4+2.44733…v3+1.66372…v2+1.00535…v+0.45563…+0
Simplifier=9v8+7.25131…v7+5.75111…v6+4.46819…v5+3.37502…v4+2.44733…v3+1.66372…v2+1.00535…v+0.45563…
Soit v0​=−5Calculer vn+1​ jusqu'à Δvn+1​<0.000001
v1​=−4.45375…:Δv1​=0.54624…
f(v0​)=(−5)9+0.90641…(−5)8+0.82158…(−5)7+0.74469…(−5)6+0.67500…(−5)5+0.61183…(−5)4+0.55457…(−5)3+0.50267…(−5)2+0.45563…(−5)+4.41299…=−1653389.03665…f′(v0​)=9(−5)8+7.25131…(−5)7+5.75111…(−5)6+4.46819…(−5)5+3.37502…(−5)4+2.44733…(−5)3+1.66372…(−5)2+1.00535…(−5)+0.45563…=3026854.43549…v1​=−4.45375…
Δv1​=∣−4.45375…−(−5)∣=0.54624…Δv1​=0.54624…
v2​=−3.96802…:Δv2​=0.48573…
f(v1​)=(−4.45375…)9+0.90641…(−4.45375…)8+0.82158…(−4.45375…)7+0.74469…(−4.45375…)6+0.67500…(−4.45375…)5+0.61183…(−4.45375…)4+0.55457…(−4.45375…)3+0.50267…(−4.45375…)2+0.45563…(−4.45375…)+4.41299…=−572909.56059…f′(v1​)=9(−4.45375…)8+7.25131…(−4.45375…)7+5.75111…(−4.45375…)6+4.46819…(−4.45375…)5+3.37502…(−4.45375…)4+2.44733…(−4.45375…)3+1.66372…(−4.45375…)2+1.00535…(−4.45375…)+0.45563…=1179476.08686…v2​=−3.96802…
Δv2​=∣−3.96802…−(−4.45375…)∣=0.48573…Δv2​=0.48573…
v3​=−3.53606…:Δv3​=0.43195…
f(v2​)=(−3.96802…)9+0.90641…(−3.96802…)8+0.82158…(−3.96802…)7+0.74469…(−3.96802…)6+0.67500…(−3.96802…)5+0.61183…(−3.96802…)4+0.55457…(−3.96802…)3+0.50267…(−3.96802…)2+0.45563…(−3.96802…)+4.41299…=−198524.05883…f′(v2​)=9(−3.96802…)8+7.25131…(−3.96802…)7+5.75111…(−3.96802…)6+4.46819…(−3.96802…)5+3.37502…(−3.96802…)4+2.44733…(−3.96802…)3+1.66372…(−3.96802…)2+1.00535…(−3.96802…)+0.45563…=459591.06090…v3​=−3.53606…
Δv3​=∣−3.53606…−(−3.96802…)∣=0.43195…Δv3​=0.43195…
v4​=−3.15190…:Δv4​=0.38416…
f(v3​)=(−3.53606…)9+0.90641…(−3.53606…)8+0.82158…(−3.53606…)7+0.74469…(−3.53606…)6+0.67500…(−3.53606…)5+0.61183…(−3.53606…)4+0.55457…(−3.53606…)3+0.50267…(−3.53606…)2+0.45563…(−3.53606…)+4.41299…=−68794.93716…f′(v3​)=9(−3.53606…)8+7.25131…(−3.53606…)7+5.75111…(−3.53606…)6+4.46819…(−3.53606…)5+3.37502…(−3.53606…)4+2.44733…(−3.53606…)3+1.66372…(−3.53606…)2+1.00535…(−3.53606…)+0.45563…=179076.94254…v4​=−3.15190…
Δv4​=∣−3.15190…−(−3.53606…)∣=0.38416…Δv4​=0.38416…
v5​=−2.81023…:Δv5​=0.34167…
f(v4​)=(−3.15190…)9+0.90641…(−3.15190…)8+0.82158…(−3.15190…)7+0.74469…(−3.15190…)6+0.67500…(−3.15190…)5+0.61183…(−3.15190…)4+0.55457…(−3.15190…)3+0.50267…(−3.15190…)2+0.45563…(−3.15190…)+4.41299…=−23840.26765…f′(v4​)=9(−3.15190…)8+7.25131…(−3.15190…)7+5.75111…(−3.15190…)6+4.46819…(−3.15190…)5+3.37502…(−3.15190…)4+2.44733…(−3.15190…)3+1.66372…(−3.15190…)2+1.00535…(−3.15190…)+0.45563…=69775.21311…v5​=−2.81023…
Δv5​=∣−2.81023…−(−3.15190…)∣=0.34167…Δv5​=0.34167…
v6​=−2.50637…:Δv6​=0.30385…
f(v5​)=(−2.81023…)9+0.90641…(−2.81023…)8+0.82158…(−2.81023…)7+0.74469…(−2.81023…)6+0.67500…(−2.81023…)5+0.61183…(−2.81023…)4+0.55457…(−2.81023…)3+0.50267…(−2.81023…)2+0.45563…(−2.81023…)+4.41299…=−8261.45550…f′(v5​)=9(−2.81023…)8+7.25131…(−2.81023…)7+5.75111…(−2.81023…)6+4.46819…(−2.81023…)5+3.37502…(−2.81023…)4+2.44733…(−2.81023…)3+1.66372…(−2.81023…)2+1.00535…(−2.81023…)+0.45563…=27188.45003…v6​=−2.50637…
Δv6​=∣−2.50637…−(−2.81023…)∣=0.30385…Δv6​=0.30385…
v7​=−2.23625…:Δv7​=0.27011…
f(v6​)=(−2.50637…)9+0.90641…(−2.50637…)8+0.82158…(−2.50637…)7+0.74469…(−2.50637…)6+0.67500…(−2.50637…)5+0.61183…(−2.50637…)4+0.55457…(−2.50637…)3+0.50267…(−2.50637…)2+0.45563…(−2.50637…)+4.41299…=−2862.37457…f′(v6​)=9(−2.50637…)8+7.25131…(−2.50637…)7+5.75111…(−2.50637…)6+4.46819…(−2.50637…)5+3.37502…(−2.50637…)4+2.44733…(−2.50637…)3+1.66372…(−2.50637…)2+1.00535…(−2.50637…)+0.45563…=10596.88514…v7​=−2.23625…
Δv7​=∣−2.23625…−(−2.50637…)∣=0.27011…Δv7​=0.27011…
v8​=−1.99650…:Δv8​=0.23975…
f(v7​)=(−2.23625…)9+0.90641…(−2.23625…)8+0.82158…(−2.23625…)7+0.74469…(−2.23625…)6+0.67500…(−2.23625…)5+0.61183…(−2.23625…)4+0.55457…(−2.23625…)3+0.50267…(−2.23625…)2+0.45563…(−2.23625…)+4.41299…=−991.10859…f′(v7​)=9(−2.23625…)8+7.25131…(−2.23625…)7+5.75111…(−2.23625…)6+4.46819…(−2.23625…)5+3.37502…(−2.23625…)4+2.44733…(−2.23625…)3+1.66372…(−2.23625…)2+1.00535…(−2.23625…)+0.45563…=4133.76874…v8​=−1.99650…
Δv8​=∣−1.99650…−(−2.23625…)∣=0.23975…Δv8​=0.23975…
v9​=−1.78466…:Δv9​=0.21183…
f(v8​)=(−1.99650…)9+0.90641…(−1.99650…)8+0.82158…(−1.99650…)7+0.74469…(−1.99650…)6+0.67500…(−1.99650…)5+0.61183…(−1.99650…)4+0.55457…(−1.99650…)3+0.50267…(−1.99650…)2+0.45563…(−1.99650…)+4.41299…=−342.49576…f′(v8​)=9(−1.99650…)8+7.25131…(−1.99650…)7+5.75111…(−1.99650…)6+4.46819…(−1.99650…)5+3.37502…(−1.99650…)4+2.44733…(−1.99650…)3+1.66372…(−1.99650…)2+1.00535…(−1.99650…)+0.45563…=1616.80028…v9​=−1.78466…
Δv9​=∣−1.78466…−(−1.99650…)∣=0.21183…Δv9​=0.21183…
v10​=−1.60003…:Δv10​=0.18463…
f(v9​)=(−1.78466…)9+0.90641…(−1.78466…)8+0.82158…(−1.78466…)7+0.74469…(−1.78466…)6+0.67500…(−1.78466…)5+0.61183…(−1.78466…)4+0.55457…(−1.78466…)3+0.50267…(−1.78466…)2+0.45563…(−1.78466…)+4.41299…=−117.65885…f′(v9​)=9(−1.78466…)8+7.25131…(−1.78466…)7+5.75111…(−1.78466…)6+4.46819…(−1.78466…)5+3.37502…(−1.78466…)4+2.44733…(−1.78466…)3+1.66372…(−1.78466…)2+1.00535…(−1.78466…)+0.45563…=637.26147…v10​=−1.60003…
Δv10​=∣−1.60003…−(−1.78466…)∣=0.18463…Δv10​=0.18463…
v11​=−1.44531…:Δv11​=0.15471…
f(v10​)=(−1.60003…)9+0.90641…(−1.60003…)8+0.82158…(−1.60003…)7+0.74469…(−1.60003…)6+0.67500…(−1.60003…)5+0.61183…(−1.60003…)4+0.55457…(−1.60003…)3+0.50267…(−1.60003…)2+0.45563…(−1.60003…)+4.41299…=−39.72697…f′(v10​)=9(−1.60003…)8+7.25131…(−1.60003…)7+5.75111…(−1.60003…)6+4.46819…(−1.60003…)5+3.37502…(−1.60003…)4+2.44733…(−1.60003…)3+1.66372…(−1.60003…)2+1.00535…(−1.60003…)+0.45563…=256.77560…v11​=−1.44531…
Δv11​=∣−1.44531…−(−1.60003…)∣=0.15471…Δv11​=0.15471…
v12​=−1.32926…:Δv12​=0.11605…
f(v11​)=(−1.44531…)9+0.90641…(−1.44531…)8+0.82158…(−1.44531…)7+0.74469…(−1.44531…)6+0.67500…(−1.44531…)5+0.61183…(−1.44531…)4+0.55457…(−1.44531…)3+0.50267…(−1.44531…)2+0.45563…(−1.44531…)+4.41299…=−12.75482…f′(v11​)=9(−1.44531…)8+7.25131…(−1.44531…)7+5.75111…(−1.44531…)6+4.46819…(−1.44531…)5+3.37502…(−1.44531…)4+2.44733…(−1.44531…)3+1.66372…(−1.44531…)2+1.00535…(−1.44531…)+0.45563…=109.90167…v12​=−1.32926…
Δv12​=∣−1.32926…−(−1.44531…)∣=0.11605…Δv12​=0.11605…
v13​=−1.26447…:Δv13​=0.06478…
f(v12​)=(−1.32926…)9+0.90641…(−1.32926…)8+0.82158…(−1.32926…)7+0.74469…(−1.32926…)6+0.67500…(−1.32926…)5+0.61183…(−1.32926…)4+0.55457…(−1.32926…)3+0.50267…(−1.32926…)2+0.45563…(−1.32926…)+4.41299…=−3.53618…f′(v12​)=9(−1.32926…)8+7.25131…(−1.32926…)7+5.75111…(−1.32926…)6+4.46819…(−1.32926…)5+3.37502…(−1.32926…)4+2.44733…(−1.32926…)3+1.66372…(−1.32926…)2+1.00535…(−1.32926…)+0.45563…=54.58328…v13​=−1.26447…
Δv13​=∣−1.26447…−(−1.32926…)∣=0.06478…Δv13​=0.06478…
v14​=−1.24663…:Δv14​=0.01784…
f(v13​)=(−1.26447…)9+0.90641…(−1.26447…)8+0.82158…(−1.26447…)7+0.74469…(−1.26447…)6+0.67500…(−1.26447…)5+0.61183…(−1.26447…)4+0.55457…(−1.26447…)3+0.50267…(−1.26447…)2+0.45563…(−1.26447…)+4.41299…=−0.64115…f′(v13​)=9(−1.26447…)8+7.25131…(−1.26447…)7+5.75111…(−1.26447…)6+4.46819…(−1.26447…)5+3.37502…(−1.26447…)4+2.44733…(−1.26447…)3+1.66372…(−1.26447…)2+1.00535…(−1.26447…)+0.45563…=35.92993…v14​=−1.24663…
Δv14​=∣−1.24663…−(−1.26447…)∣=0.01784…Δv14​=0.01784…
v15​=−1.24548…:Δv15​=0.00114…
f(v14​)=(−1.24663…)9+0.90641…(−1.24663…)8+0.82158…(−1.24663…)7+0.74469…(−1.24663…)6+0.67500…(−1.24663…)5+0.61183…(−1.24663…)4+0.55457…(−1.24663…)3+0.50267…(−1.24663…)2+0.45563…(−1.24663…)+4.41299…=−0.03658…f′(v14​)=9(−1.24663…)8+7.25131…(−1.24663…)7+5.75111…(−1.24663…)6+4.46819…(−1.24663…)5+3.37502…(−1.24663…)4+2.44733…(−1.24663…)3+1.66372…(−1.24663…)2+1.00535…(−1.24663…)+0.45563…=31.89979…v15​=−1.24548…
Δv15​=∣−1.24548…−(−1.24663…)∣=0.00114…Δv15​=0.00114…
v16​=−1.24548…:Δv16​=4.44027E−6
f(v15​)=(−1.24548…)9+0.90641…(−1.24548…)8+0.82158…(−1.24548…)7+0.74469…(−1.24548…)6+0.67500…(−1.24548…)5+0.61183…(−1.24548…)4+0.55457…(−1.24548…)3+0.50267…(−1.24548…)2+0.45563…(−1.24548…)+4.41299…=−0.00014…f′(v15​)=9(−1.24548…)8+7.25131…(−1.24548…)7+5.75111…(−1.24548…)6+4.46819…(−1.24548…)5+3.37502…(−1.24548…)4+2.44733…(−1.24548…)3+1.66372…(−1.24548…)2+1.00535…(−1.24548…)+0.45563…=31.65496…v16​=−1.24548…
Δv16​=∣−1.24548…−(−1.24548…)∣=4.44027E−6Δv16​=4.44027E−6
v17​=−1.24548…:Δv17​=6.62571E−11
f(v16​)=(−1.24548…)9+0.90641…(−1.24548…)8+0.82158…(−1.24548…)7+0.74469…(−1.24548…)6+0.67500…(−1.24548…)5+0.61183…(−1.24548…)4+0.55457…(−1.24548…)3+0.50267…(−1.24548…)2+0.45563…(−1.24548…)+4.41299…=−2.0973E−9f′(v16​)=9(−1.24548…)8+7.25131…(−1.24548…)7+5.75111…(−1.24548…)6+4.46819…(−1.24548…)5+3.37502…(−1.24548…)4+2.44733…(−1.24548…)3+1.66372…(−1.24548…)2+1.00535…(−1.24548…)+0.45563…=31.65401…v17​=−1.24548…
Δv17​=∣−1.24548…−(−1.24548…)∣=6.62571E−11Δv17​=6.62571E−11
v≈−1.24548…
Appliquer une division longue:v+1.24548…v9+0.90641…v8+0.82158…v7+0.74469…v6+0.67500…v5+0.61183…v4+0.55457…v3+0.50267…v2+0.45563…v+4.41299…​=v8−0.33906…v7+1.24388…v6−0.80453…v5+1.67704…v4−1.47688…v3+2.39401…v2−2.47902…v+3.54320…
v8−0.33906…v7+1.24388…v6−0.80453…v5+1.67704…v4−1.47688…v3+2.39401…v2−2.47902…v+3.54320…≈0
Trouver une solution pour v8−0.33906…v7+1.24388…v6−0.80453…v5+1.67704…v4−1.47688…v3+2.39401…v2−2.47902…v+3.54320…=0 par la méthode de Newton-Raphson:Aucune solution pour v∈R
v8−0.33906…v7+1.24388…v6−0.80453…v5+1.67704…v4−1.47688…v3+2.39401…v2−2.47902…v+3.54320…=0
Définition de l'approximation de Newton-Raphson
f(v)=v8−0.33906…v7+1.24388…v6−0.80453…v5+1.67704…v4−1.47688…v3+2.39401…v2−2.47902…v+3.54320…
Trouver f′(v):8v7−2.37346…v6+7.46332…v5−4.02269…v4+6.70817…v3−4.43066…v2+4.78802…v−2.47902…
dvd​(v8−0.33906…v7+1.24388…v6−0.80453…v5+1.67704…v4−1.47688…v3+2.39401…v2−2.47902…v+3.54320…)
Appliquer la règle de l'addition/soustraction: (f±g)′=f′±g′=dvd​(v8)−dvd​(0.33906…v7)+dvd​(1.24388…v6)−dvd​(0.80453…v5)+dvd​(1.67704…v4)−dvd​(1.47688…v3)+dvd​(2.39401…v2)−dvd​(2.47902…v)+dvd​(3.54320…)
dvd​(v8)=8v7
dvd​(v8)
Appliquer la règle de la puissance: dxd​(xa)=a⋅xa−1=8v8−1
Simplifier=8v7
dvd​(0.33906…v7)=2.37346…v6
dvd​(0.33906…v7)
Retirer la constante: (a⋅f)′=a⋅f′=0.33906…dvd​(v7)
Appliquer la règle de la puissance: dxd​(xa)=a⋅xa−1=0.33906…⋅7v7−1
Simplifier=2.37346…v6
dvd​(1.24388…v6)=7.46332…v5
dvd​(1.24388…v6)
Retirer la constante: (a⋅f)′=a⋅f′=1.24388…dvd​(v6)
Appliquer la règle de la puissance: dxd​(xa)=a⋅xa−1=1.24388…⋅6v6−1
Simplifier=7.46332…v5
dvd​(0.80453…v5)=4.02269…v4
dvd​(0.80453…v5)
Retirer la constante: (a⋅f)′=a⋅f′=0.80453…dvd​(v5)
Appliquer la règle de la puissance: dxd​(xa)=a⋅xa−1=0.80453…⋅5v5−1
Simplifier=4.02269…v4
dvd​(1.67704…v4)=6.70817…v3
dvd​(1.67704…v4)
Retirer la constante: (a⋅f)′=a⋅f′=1.67704…dvd​(v4)
Appliquer la règle de la puissance: dxd​(xa)=a⋅xa−1=1.67704…⋅4v4−1
Simplifier=6.70817…v3
dvd​(1.47688…v3)=4.43066…v2
dvd​(1.47688…v3)
Retirer la constante: (a⋅f)′=a⋅f′=1.47688…dvd​(v3)
Appliquer la règle de la puissance: dxd​(xa)=a⋅xa−1=1.47688…⋅3v3−1
Simplifier=4.43066…v2
dvd​(2.39401…v2)=4.78802…v
dvd​(2.39401…v2)
Retirer la constante: (a⋅f)′=a⋅f′=2.39401…dvd​(v2)
Appliquer la règle de la puissance: dxd​(xa)=a⋅xa−1=2.39401…⋅2v2−1
Simplifier=4.78802…v
dvd​(2.47902…v)=2.47902…
dvd​(2.47902…v)
Retirer la constante: (a⋅f)′=a⋅f′=2.47902…dvdv​
Appliquer la dérivée commune: dvdv​=1=2.47902…⋅1
Simplifier=2.47902…
dvd​(3.54320…)=0
dvd​(3.54320…)
Dérivée d'une constante: dxd​(a)=0=0
=8v7−2.37346…v6+7.46332…v5−4.02269…v4+6.70817…v3−4.43066…v2+4.78802…v−2.47902…+0
Simplifier=8v7−2.37346…v6+7.46332…v5−4.02269…v4+6.70817…v3−4.43066…v2+4.78802…v−2.47902…
Soit v0​=1Calculer vn+1​ jusqu'à Δvn+1​<0.000001
v1​=0.65147…:Δv1​=0.34852…
f(v0​)=18−0.33906…⋅17+1.24388…⋅16−0.80453…⋅15+1.67704…⋅14−1.47688…⋅13+2.39401…⋅12−2.47902…⋅1+3.54320…=4.75863…f′(v0​)=8⋅17−2.37346…⋅16+7.46332…⋅15−4.02269…⋅14+6.70817…⋅13−4.43066…⋅12+4.78802…⋅1−2.47902…=13.65367…v1​=0.65147…
Δv1​=∣0.65147…−1∣=0.34852…Δv1​=0.34852…
v2​=−2.25263…:Δv2​=2.90411…
f(v1​)=0.65147…8−0.33906…⋅0.65147…7+1.24388…⋅0.65147…6−0.80453…⋅0.65147…5+1.67704…⋅0.65147…4−1.47688…⋅0.65147…3+2.39401…⋅0.65147…2−2.47902…⋅0.65147…+3.54320…=2.85422…f′(v1​)=8⋅0.65147…7−2.37346…⋅0.65147…6+7.46332…⋅0.65147…5−4.02269…⋅0.65147…4+6.70817…⋅0.65147…3−4.43066…⋅0.65147…2+4.78802…⋅0.65147…−2.47902…=0.98282…v2​=−2.25263…
Δv2​=∣−2.25263…−0.65147…∣=2.90411…Δv2​=2.90411…
v3​=−1.93475…:Δv3​=0.31788…
f(v2​)=(−2.25263…)8−0.33906…(−2.25263…)7+1.24388…(−2.25263…)6−0.80453…(−2.25263…)5+1.67704…(−2.25263…)4−1.47688…(−2.25263…)3+2.39401…(−2.25263…)2−2.47902…(−2.25263…)+3.54320…=1053.34912…f′(v2​)=8(−2.25263…)7−2.37346…(−2.25263…)6+7.46332…(−2.25263…)5−4.02269…(−2.25263…)4+6.70817…(−2.25263…)3−4.43066…(−2.25263…)2+4.78802…(−2.25263…)−2.47902…=−3313.66679…v3​=−1.93475…
Δv3​=∣−1.93475…−(−2.25263…)∣=0.31788…Δv3​=0.31788…
v4​=−1.64441…:Δv4​=0.29034…
f(v3​)=(−1.93475…)8−0.33906…(−1.93475…)7+1.24388…(−1.93475…)6−0.80453…(−1.93475…)5+1.67704…(−1.93475…)4−1.47688…(−1.93475…)3+2.39401…(−1.93475…)2−2.47902…(−1.93475…)+3.54320…=369.29768…f′(v3​)=8(−1.93475…)7−2.37346…(−1.93475…)6+7.46332…(−1.93475…)5−4.02269…(−1.93475…)4+6.70817…(−1.93475…)3−4.43066…(−1.93475…)2+4.78802…(−1.93475…)−2.47902…=−1271.93873…v4​=−1.64441…
Δv4​=∣−1.64441…−(−1.93475…)∣=0.29034…Δv4​=0.29034…
v5​=−1.36913…:Δv5​=0.27528…
f(v4​)=(−1.64441…)8−0.33906…(−1.64441…)7+1.24388…(−1.64441…)6−0.80453…(−1.64441…)5+1.67704…(−1.64441…)4−1.47688…(−1.64441…)3+2.39401…(−1.64441…)2−2.47902…(−1.64441…)+3.54320…=131.68340…f′(v4​)=8(−1.64441…)7−2.37346…(−1.64441…)6+7.46332…(−1.64441…)5−4.02269…(−1.64441…)4+6.70817…(−1.64441…)3−4.43066…(−1.64441…)2+4.78802…(−1.64441…)−2.47902…=−478.36033…v5​=−1.36913…
Δv5​=∣−1.36913…−(−1.64441…)∣=0.27528…Δv5​=0.27528…
v6​=−1.08732…:Δv6​=0.28180…
f(v5​)=(−1.36913…)8−0.33906…(−1.36913…)7+1.24388…(−1.36913…)6−0.80453…(−1.36913…)5+1.67704…(−1.36913…)4−1.47688…(−1.36913…)3+2.39401…(−1.36913…)2−2.47902…(−1.36913…)+3.54320…=48.57656…f′(v5​)=8(−1.36913…)7−2.37346…(−1.36913…)6+7.46332…(−1.36913…)5−4.02269…(−1.36913…)4+6.70817…(−1.36913…)3−4.43066…(−1.36913…)2+4.78802…(−1.36913…)−2.47902…=−172.37459…v6​=−1.08732…
Δv6​=∣−1.08732…−(−1.36913…)∣=0.28180…Δv6​=0.28180…
v7​=−0.75017…:Δv7​=0.33714…
f(v6​)=(−1.08732…)8−0.33906…(−1.08732…)7+1.24388…(−1.08732…)6−0.80453…(−1.08732…)5+1.67704…(−1.08732…)4−1.47688…(−1.08732…)3+2.39401…(−1.08732…)2−2.47902…(−1.08732…)+3.54320…=19.15306…f′(v6​)=8(−1.08732…)7−2.37346…(−1.08732…)6+7.46332…(−1.08732…)5−4.02269…(−1.08732…)4+6.70817…(−1.08732…)3−4.43066…(−1.08732…)2+4.78802…(−1.08732…)−2.47902…=−56.80952…v7​=−0.75017…
Δv7​=∣−0.75017…−(−1.08732…)∣=0.33714…Δv7​=0.33714…
v8​=−0.21910…:Δv8​=0.53107…
f(v7​)=(−0.75017…)8−0.33906…(−0.75017…)7+1.24388…(−0.75017…)6−0.80453…(−0.75017…)5+1.67704…(−0.75017…)4−1.47688…(−0.75017…)3+2.39401…(−0.75017…)2−2.47902…(−0.75017…)+3.54320…=8.46330…f′(v7​)=8(−0.75017…)7−2.37346…(−0.75017…)6+7.46332…(−0.75017…)5−4.02269…(−0.75017…)4+6.70817…(−0.75017…)3−4.43066…(−0.75017…)2+4.78802…(−0.75017…)−2.47902…=−15.93620…v8​=−0.21910…
Δv8​=∣−0.21910…−(−0.75017…)∣=0.53107…Δv8​=0.53107…
Impossible de trouver une solution
Les solutions sontv≈0.90641…,v≈−1.24548…
v≈0.90641…,v≈−1.24548…
Resubstituer v=u2,résoudre pour u
Résoudre u2=0.90641…:u=0.90641…​,u=−0.90641…​
u2=0.90641…
Pour x2=f(a) les solutions sont x=f(a)​,−f(a)​
u=0.90641…​,u=−0.90641…​
Résoudre u2=−1.24548…:Aucune solution pour u∈R
u2=−1.24548…
x2 ne peut pas être négative pour x∈RAucunesolutionpouru∈R
Les solutions sont
u=0.90641…​,u=−0.90641…​
u=0.90641…​,u=−0.90641…​
Vérifier les solutions
Trouver les points non définis (singularité):u=0
Prendre le(s) dénominateur(s) de u2u22​ et le comparer à zéro
Résoudre u2=0:u=0
u2=0
Appliquer la règle xn=0⇒x=0
u=0
Les points suivants ne sont pas définisu=0
Combiner des points indéfinis avec des solutions :
u=0.90641…​,u=−0.90641…​
Remplacer u=sin(a)sin(a)=0.90641…​,sin(a)=−0.90641…​
sin(a)=0.90641…​,sin(a)=−0.90641…​
sin(a)=0.90641…​:a=arcsin(0.90641…​)+2πn,a=π−arcsin(0.90641…​)+2πn
sin(a)=0.90641…​
Appliquer les propriétés trigonométriques inverses
sin(a)=0.90641…​
Solutions générales pour sin(a)=0.90641…​sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πna=arcsin(0.90641…​)+2πn,a=π−arcsin(0.90641…​)+2πn
a=arcsin(0.90641…​)+2πn,a=π−arcsin(0.90641…​)+2πn
sin(a)=−0.90641…​:a=arcsin(−0.90641…​)+2πn,a=π+arcsin(0.90641…​)+2πn
sin(a)=−0.90641…​
Appliquer les propriétés trigonométriques inverses
sin(a)=−0.90641…​
Solutions générales pour sin(a)=−0.90641…​sin(x)=−a⇒x=arcsin(−a)+2πn,x=π+arcsin(a)+2πna=arcsin(−0.90641…​)+2πn,a=π+arcsin(0.90641…​)+2πn
a=arcsin(−0.90641…​)+2πn,a=π+arcsin(0.90641…​)+2πn
Combiner toutes les solutionsa=arcsin(0.90641…​)+2πn,a=π−arcsin(0.90641…​)+2πn,a=arcsin(−0.90641…​)+2πn,a=π+arcsin(0.90641…​)+2πn
Montrer les solutions sous la forme décimalea=1.25989…+2πn,a=π−1.25989…+2πn,a=−1.25989…+2πn,a=π+1.25989…+2πn

Graphe

Sorry, your browser does not support this application
Afficher un graph interactif

Exemples populaires

tan^3(x)=2tan3(x)=2sin^3(x)=3sin(x)sin3(x)=3sin(x)cos^4(x)+2sin^2(x)+6cos^2(x)+5=0cos4(x)+2sin2(x)+6cos2(x)+5=01+sin(2a)=sin^2(a)1+sin(2a)=sin2(a)((cos^3(a)))/((2cos^2(a)-1))=cos(a)(2cos2(a)−1)(cos3(a))​=cos(a)
Outils d'étudeSolveur mathématique IAAI ChatDes feuilles de calculExercicesAides-mémoireCalculateursCalculateur de graphesCalculateur de géométrieVérifier la solution
applicationsApplication Symbolab (Android)Calculateur de graphes (Android)Exercices (Android)Application Symbolab (iOS)Calculateur de graphes (iOS)Exercices (iOS)Extension Chrome
EntrepriseÀ propos de SymbolabBlogAide
LégalVie privéeService TermsPolitique en matière de cookiesParamètres des cookiesNe pas vendre ni partager mes informations personnellesDroits d'auteur, directives de la communauté, DSA et autres ressources juridiquesCentre juridique Learneo
Des médias sociaux
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024