Simplifying and Evaluating Expressions With Integers
Learning Outcomes
- Simplify integer expressions involving subtraction
- Substitute and simplify integer expressions involving subtraction
- Subtract [latex]-23 - 7[/latex]. Think: We start with [latex]23[/latex] negative counters. We have to subtract [latex]7[/latex] positives, but there are no positives to take away. So we add [latex]7[/latex] neutral pairs to get the [latex]7[/latex] positives. Now we take away the [latex]7[/latex] positives. So what’s left? We have the original [latex]23[/latex] negatives plus [latex]7[/latex] more negatives from the neutral pair. The result is [latex]30[/latex] negatives. [latex]-23 - 7=-30[/latex] Notice, that to subtract [latex]\text{7,}[/latex] we added [latex]7[/latex] negatives.
- Subtract [latex]30-\left(-12\right)[/latex]. Think: We start with [latex]30[/latex] positives. We have to subtract [latex]12[/latex] negatives, but there are no negatives to take away. So we add [latex]12[/latex] neutral pairs to the [latex]30[/latex] positives. Now we take away the [latex]12[/latex] negatives. What’s left? We have the original [latex]30[/latex] positives plus [latex]12[/latex] more positives from the neutral pairs. The result is [latex]42[/latex] positives. [latex]30-\left(-12\right)=42[/latex] Notice that to subtract [latex]-12[/latex], we added [latex]12[/latex].
Subtraction Property
Subtracting a number is the same as adding it's opposite.[latex]a-b=a+(-b)[/latex]
We see that [latex]6 - 4[/latex] gives the same answer as [latex]6+\left(-4\right)[/latex].
Of course, when we have a subtraction problem that has only positive numbers, like the first example, we just do the subtraction. We already knew how to subtract [latex]6 - 4[/latex] long ago. But knowing that [latex]6 - 4[/latex] gives the same answer as [latex]6+\left(-4\right)[/latex] helps when we are subtracting negative numbers.
example
Simplify:- [latex]13 - 8\text{ and }13+\left(-8\right)[/latex]
- [latex]-17 - 9\text{ and }-17+\left(-9\right)[/latex]
| 1. | |
| [latex]13 - 8[/latex] and [latex]13+\left(-8\right)[/latex] | |
| Subtract to simplify. | [latex]13 - 8=5[/latex] |
| Add to simplify. | [latex]13+\left(-8\right)=5[/latex] |
| Subtracting [latex]8[/latex] from [latex]13[/latex] is the same as adding [latex]−8[/latex] to [latex]13[/latex]. |
| 2. | |
| [latex]-17 - 9[/latex] and [latex]-17+\left(-9\right)[/latex] | |
| Subtract to simplify. | [latex]-17 - 9=-26[/latex] |
| Add to simplify. | [latex]-17+\left(-9\right)=-26[/latex] |
| Subtracting [latex]9[/latex] from [latex]−17[/latex] is the same as adding [latex]−9[/latex] to [latex]−17[/latex]. |
We see that [latex]8-\left(-5\right)[/latex] gives the same result as [latex]8+5[/latex]. Subtracting a negative number is like adding a positive. In the next example, we will see more examples of this concept.
example
Simplify:- [latex]9-\left(-15\right)\text{ and }9+15[/latex]
- [latex]-7-\left(-4\right)\text{ and }-7+4[/latex]
Answer: Solution:
| 1. | |
| [latex]9-\left(-15\right)[/latex] and [latex]9+15[/latex] | |
| Subtract to simplify. | [latex]9-\left(-15\right)=-24[/latex] |
| Add to simplify. | [latex]9+15=24[/latex] |
| Subtracting [latex]−15[/latex] from [latex]9[/latex] is the same as adding [latex]15[/latex] to [latex]9[/latex]. |
| 2. | |
| [latex]-7-\left(-4\right)[/latex] and [latex]-7+4[/latex] | |
| Subtract to simplify. | [latex]-7-\left(-4\right)=-3[/latex] |
| Add to simplify. | [latex]-7+4=-3[/latex] |
| Subtracting [latex]−4[/latex] from [latex]−7[/latex] is the same as adding [latex]4[/latex] to [latex]−7[/latex]. |
| [latex]5 - 3[/latex] | [latex]-5-\left(-3\right)[/latex] |
| [latex]2[/latex] | [latex]-2[/latex] |
| [latex]2[/latex] positives | [latex]2[/latex] negatives |
| When there would be enough counters of the color to take away, subtract. | |
| [latex]-5 - 3[/latex] | [latex]5-\left(-3\right)[/latex] |
| [latex]-8[/latex] | [latex]8[/latex] |
| [latex]5[/latex] negatives, want to subtract [latex]3[/latex] positives | [latex]5[/latex] positives, want to subtract [latex]3[/latex] negatives |
| need neutral pairs | need neutral pairs |
| When there would not be enough of the counters to take away, add neutral pairs. | |
example
Simplify: [latex]-74-\left(-58\right)[/latex].Answer: Solution:
| We are taking [latex]58[/latex] negatives away from [latex]74[/latex] negatives. | [latex]-74-\left(-58\right)[/latex] |
| Subtract. | [latex]-16[/latex] |
example
Simplify: [latex]7-\left(-4 - 3\right)-9[/latex].Answer: Solution: We use the order of operations to simplify this expression, performing operations inside the parentheses first. Then we subtract from left to right.
| Simplify inside the parentheses first. | [latex]7-\left(-4 - 3\right)-9[/latex] |
| Subtract from left to right. | [latex]7-\left(-7\right)-9[/latex] |
| Subtract. | [latex]14--9[/latex] |
| [latex]5[/latex] |
example
Simplify: [latex]3\cdot 7 - 4\cdot 7 - 5\cdot 8[/latex].Answer: Solution: We use the order of operations to simplify this expression. First we multiply, and then subtract from left to right.
| Multiply first. | [latex]3\cdot 7 - 4\cdot 7 - 5\cdot 8[/latex] |
| Subtract from left to right. | [latex]21--28--40[/latex] |
| Subtract. | [latex]--7--40[/latex] |
| [latex]--47[/latex] |
Evaluate Variable Expressions with Integers
Now we’ll practice evaluating expressions that involve subtracting negative numbers as well as positive numbers.example
Evaluate [latex]x - 4\text{ when}[/latex]- [latex]x=3[/latex]
- [latex]x=-6[/latex].
Answer: Solution: 1. To evaluate [latex]x - 4[/latex] when [latex]x=3[/latex] , substitute [latex]3[/latex] for [latex]x[/latex] in the expression.
| [latex]x--4[/latex] | |
| [latex]\text{Substitute }\color{red}{3}\text{ for }x[/latex] | [latex]\color{red}{3}--4[/latex] |
| Subtract. | [latex]--1[/latex] |
| [latex]x--4[/latex] | |
| [latex]\text{Substitute }\color{red}{--6}\text{ for }x[/latex] | [latex]\color{red}{--6}--4[/latex] |
| Subtract. | [latex]--10[/latex] |
example
Evaluate [latex]20-z\text{ when}[/latex]- [latex]z=12[/latex]
- [latex]z=-12[/latex]
Answer: Solution: 1. To evaluate [latex]20-z\text{ when }z=12[/latex], substitute [latex]12[/latex] for [latex]z[/latex] in the expression.
| [latex]20--z[/latex] | |
| [latex]\text{Substitute }\color{red}{12}\text{ for }z[/latex] | [latex]20--\color{red}{12}[/latex] |
| Subtract. | [latex]8[/latex] |
| [latex]20--z[/latex] | |
| [latex]\text{Substitute }\color{red}{--12}\text{ for }z[/latex] | [latex]20--(\color{red}{--12})[/latex] |
| Subtract. | [latex]32[/latex] |
Licenses & Attributions
CC licensed content, Shared previously
- Ex: Subtract Two Digit Integers (Pos-Neg) Formal Rules and Number Line (Pos Sum). Authored by: James Sousa (Mathispower4u.com). License: CC BY: Attribution.
- Ex 1: Evaluate Expressions Involving Integer Subtraction. Authored by: James Sousa (Mathispower4u.com). License: CC BY: Attribution.
- Ex: Evaluate an Expression Involving Integer Operations. Authored by: James Sousa (Mathispower4u.com). License: CC BY: Attribution.
- Question ID: 145193, 145195, 145197, 145199, 145200, 145203, 145205. License: Public Domain: No Known Copyright.
CC licensed content, Specific attribution
- Prealgebra. Provided by: OpenStax License: CC BY: Attribution. License terms: Download for free at http://cnx.org/contents/[email protected].