Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Calculus >

integral of 300e^{500t}

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

∫300e500tdt

Solution

53​e500t+C
Solution steps
∫300e500tdt
Take the constant out: ∫a⋅f(x)dx=a⋅∫f(x)dx=300⋅∫e500tdt
Apply u-substitution
=300⋅∫eu5001​du
Take the constant out: ∫a⋅f(x)dx=a⋅∫f(x)dx=300⋅5001​⋅∫eudu
Use the common integral: ∫eudu=eu=300⋅5001​eu
Substitute back u=500t=300⋅5001​e500t
Simplify 300⋅5001​e500t:53​e500t
=53​e500t
Add a constant to the solution=53​e500t+C

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

integral of (x+1)/(sqrt(2-x))integral of 6t-18integral of 12ycos(4x)-3sin(y)integral of (x-9)/(x^3-5x^2+6x)integral of (sin(x))/(1+tan^2(x))

Frequently Asked Questions (FAQ)

  • What is the integral of 300e^{500t} ?

    The integral of 300e^{500t} is 3/5 e^{500t}+C
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024