You can see your coupon in the
user page
Go To QuillBot
Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
×
Symbolab for Chrome
Snip & solve on any website
Add to Chrome
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
integral of (2x)/(x^2-3x-10)
\int\:\frac{2x}{x^{2}-3x-10}dx
(\partial)/(\partial y)(x^{1/2}*y^{1/2})
\frac{\partial\:}{\partial\:y}(x^{\frac{1}{2}}\cdot\:y^{\frac{1}{2}})
d/(dt)((cos(t))/(sin(t)))
\frac{d}{dt}(\frac{\cos(t)}{\sin(t)})
derivative of xarctan(2x)
\frac{d}{dx}(x\arctan(2x))
limit as x approaches 0-of xcsc(x)
\lim\:_{x\to\:0-}(x\csc(x))
(d^2)/(dx^2)(cos(-2x))
\frac{d^{2}}{dx^{2}}(\cos(-2x))
derivative of cos(x^2+pi)
\frac{d}{dx}(\cos(x^{2}+π))
derivative of g(t)=sqrt(2)^t
derivative\:g(t)=\sqrt{2}^{t}
taylor x^2e^{x-1},\at 1
taylor\:x^{2}e^{x-1},\at\:1
integral of cot(19x)
\int\:\cot(19x)dx
integral of x^2(3x^3-2)^4
\int\:x^{2}(3x^{3}-2)^{4}dx
derivative of k^x+x^k
\frac{d}{dx}(k^{x}+x^{k})
integral from 0 to 2 of 2pi(x+1)(12-6x)
\int\:_{0}^{2}2π(x+1)(12-6x)dx
derivative of g(x)=3^{(x/2)}
derivative\:g(x)=3^{(\frac{x}{2})}
limit as x approaches 2 of ((3))/(x-2)
\lim\:_{x\to\:2}(\frac{(3)}{x-2})
integral of sec^7(3x)tan(3x)
\int\:\sec^{7}(3x)\tan(3x)dx
limit as x approaches 0-of cot(x)
\lim\:_{x\to\:0-}(\cot(x))
(x(csc(y/x))-y)dx+xdy=0
(x(\csc(\frac{y}{x}))-y)dx+xdy=0
derivative of f(x)=(2x)^3
derivative\:f(x)=(2x)^{3}
tangent of y= 1/((x-1))
tangent\:y=\frac{1}{(x-1)}
(\partial)/(\partial x)(1/(x^2)+y)
\frac{\partial\:}{\partial\:x}(\frac{1}{x^{2}}+y)
(\partial)/(\partial y)(y^2)
\frac{\partial\:}{\partial\:y}(y^{2})
y^{''}+y^'-2y=2t,y(0)=0,y^'(0)=4
y^{\prime\:\prime\:}+y^{\prime\:}-2y=2t,y(0)=0,y^{\prime\:}(0)=4
(\partial)/(\partial x)(sin(x)cosh(y))
\frac{\partial\:}{\partial\:x}(\sin(x)\cosh(y))
(dy)/(dx)=1+x+y+x*y
\frac{dy}{dx}=1+x+y+x\cdot\:y
limit as x approaches infinity of (1+5/x)^{x/7}
\lim\:_{x\to\:\infty\:}((1+\frac{5}{x})^{\frac{x}{7}})
integral of (2000)/(5x+10)
\int\:\frac{2000}{5x+10}dx
inverse oflaplace ((s+2))/((s^2+s+1))
inverselaplace\:\frac{(s+2)}{(s^{2}+s+1)}
inverse oflaplace (-25)/(s^2+6s+25)
inverselaplace\:\frac{-25}{s^{2}+6s+25}
tangent of f(x)=x^2-8,\at x=4
tangent\:f(x)=x^{2}-8,\at\:x=4
xy^'=3y-6x^2
xy^{\prime\:}=3y-6x^{2}
integral of cos(pix)cos(4pix)
\int\:\cos(πx)\cos(4πx)dx
area 3x,3, 3/x
area\:3x,3,\frac{3}{x}
integral of x/(2ln(x))
\int\:\frac{x}{2\ln(x)}dx
limit as x approaches 1 of x+2
\lim\:_{x\to\:1}(x+2)
limit as x approaches pi of ln(cos(x)-7)
\lim\:_{x\to\:π}(\ln(\cos(x)-7))
f(x)= 1/(3x^{2/3)}
f(x)=\frac{1}{3x^{\frac{2}{3}}}
integral of x^5sqrt(1+x^2)
\int\:x^{5}\sqrt{1+x^{2}}dx
y^{''}=ky
y^{\prime\:\prime\:}=ky
integral of (x^3)/(sqrt(x^2+16))
\int\:\frac{x^{3}}{\sqrt{x^{2}+16}}dx
derivative of \sqrt[4]{x^3}
derivative\:\sqrt[4]{x^{3}}
sum from n=1 to infinity of ((x^n))/(n!)
\sum\:_{n=1}^{\infty\:}\frac{(x^{n})}{n!}
derivative of sin^2(1-s^2)
derivative\:\sin^{2}(1-s^{2})
integral of tan^2(θ)sec^4(θ)
\int\:\tan^{2}(θ)\sec^{4}(θ)dθ
area x^3-3x,x
area\:x^{3}-3x,x
derivative of ln|4x-3|
\frac{d}{dx}(\ln\left|4x-3\right|)
integral of x(sqrt(2x-1))
\int\:x(\sqrt{2x-1})dx
limit as x approaches pi of ln|cos(x)-8|
\lim\:_{x\to\:π}(\ln\left|\cos(x)-8\right|)
integral of e^{-kx}
\int\:e^{-kx}dx
d/(dt)(e^t)
\frac{d}{dt}(e^{t})
limit as x approaches infinity of 3x-5
\lim\:_{x\to\:\infty\:}(3x-5)
integral of x^2*sec^2(x^3)
\int\:x^{2}\cdot\:\sec^{2}(x^{3})dx
limit as x approaches 0 of (x^3-0)/x
\lim\:_{x\to\:0}(\frac{x^{3}-0}{x})
limit as x approaches pi/2 of (1-tan(2x))/(2tan(x))
\lim\:_{x\to\:\frac{π}{2}}(\frac{1-\tan(2x)}{2\tan(x)})
derivative of x^{-8cos(x)}
derivative\:x^{-8\cos(x)}
derivative of 4x^2cos(2x)
\frac{d}{dx}(4x^{2}\cos(2x))
(dy)/(dx)=x+y-1
\frac{dy}{dx}=x+y-1
inverse oflaplace 1/(s^3(s+4))
inverselaplace\:\frac{1}{s^{3}(s+4)}
derivative of 10x^{10}e^x
\frac{d}{dx}(10x^{10}e^{x})
integral of 1/(sqrt(-t^2+8t-15))
\int\:\frac{1}{\sqrt{-t^{2}+8t-15}}dt
derivative of x+e^x-1/x
derivative\:x+e^{x}-\frac{1}{x}
integral of ((4x-5))/((x-2)(x+3))
\int\:\frac{(4x-5)}{(x-2)(x+3)}dx
integral of y/(x(x+y))
\int\:\frac{y}{x(x+y)}dx
xy^'+y=e^x,y(1)=6
xy^{\prime\:}+y=e^{x},y(1)=6
integral of 9/(6+9x)
\int\:\frac{9}{6+9x}dx
integral of (2^x+e^pi)
\int\:(2^{x}+e^{π})dx
derivative of e^7
derivative\:e^{7}
dx+e^3xdy=0
dx+e^{3}xdy=0
tangent of f(x)=x^2,(-1,-3)
tangent\:f(x)=x^{2},(-1,-3)
area x^2-4x,x
area\:x^{2}-4x,x
limit as x approaches 3 of 5(x-3)ln(x-3)
\lim\:_{x\to\:3}(5(x-3)\ln(x-3))
tangent of f(x)= 1/x+3,\at x=-1
tangent\:f(x)=\frac{1}{x}+3,\at\:x=-1
limit as x approaches 5 of-9/(x+5)
\lim\:_{x\to\:5}(-\frac{9}{x+5})
integral from 1 to 3 of 1/(sqrt(3-x))
\int\:_{1}^{3}\frac{1}{\sqrt{3-x}}dx
derivative of (sin(6x))^4
derivative\:(\sin(6x))^{4}
integral from 1 to e of x^3ln(x)
\int\:_{1}^{e}x^{3}\ln(x)dx
derivative of x/(20)
\frac{d}{dx}(\frac{x}{20})
tangent of y=7e^x+x,(0,7)
tangent\:y=7e^{x}+x,(0,7)
inverse oflaplace 4
inverselaplace\:4
integral from 0 to 6 of x^2-6x
\int\:_{0}^{6}x^{2}-6xdx
area x^2,x+5
area\:x^{2},x+5
y^{''}-6y^'+8y=2cos(3t),y(0)=2,y^'(0)=-4
y^{\prime\:\prime\:}-6y^{\prime\:}+8y=2\cos(3t),y(0)=2,y^{\prime\:}(0)=-4
e^yy^'=e^y+4x
e^{y}y^{\prime\:}=e^{y}+4x
derivative of sec^2(2x)
derivative\:\sec^{2}(2x)
ydx+(x^2+4x)dy=0
ydx+(x^{2}+4x)dy=0
(dy)/(dx)=(e^x+7)^2
\frac{dy}{dx}=(e^{x}+7)^{2}
derivative of y=x^2cos(4/x)
derivative\:y=x^{2}\cos(\frac{4}{x})
normal of f(x)=x^4+2e^x,(0,2)
normal\:f(x)=x^{4}+2e^{x},(0,2)
derivative of (sin(x))^2
derivative\:(\sin(x))^{2}
limit as x approaches 0+of-x+5
\lim\:_{x\to\:0+}(-x+5)
taylor e^{-3x}
taylor\:e^{-3x}
limit as x approaches 9-of (x^9)/(x-9)
\lim\:_{x\to\:9-}(\frac{x^{9}}{x-9})
limit as x approaches 0+of xln(x^6)
\lim\:_{x\to\:0+}(x\ln(x^{6}))
tangent of (6x)/((x+1))
tangent\:\frac{6x}{(x+1)}
integral of (7x^2+x+54)/(x^3+9x)
\int\:\frac{7x^{2}+x+54}{x^{3}+9x}dx
derivative of y=sqrt(x+2)
derivative\:y=\sqrt{x+2}
derivative of 5/(25x^2+1)
\frac{d}{dx}(\frac{5}{25x^{2}+1})
integral of (2t^5)/5-(2t^2)/5-(2t)/5
\int\:\frac{2t^{5}}{5}-\frac{2t^{2}}{5}-\frac{2t}{5}dt
derivative of ln(3^{3x})
\frac{d}{dx}(\ln(3^{3x}))
integral from 0 to 1/2 of 5cos(-1(x))
\int\:_{0}^{\frac{1}{2}}5\cos(-1(x))dx
1
..
118
119
120
121
122
..
1823