You can see your coupon in the
user page
Go To QuillBot
Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
×
Symbolab for Chrome
Snip & solve on any website
Add to Chrome
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
(\partial)/(\partial x)(ysqrt(x))
\frac{\partial\:}{\partial\:x}(y\sqrt{x})
(\partial)/(\partial x)(e^{-pi/2})
\frac{\partial\:}{\partial\:x}(e^{-\frac{π}{2}})
integral of 20te^t
\int\:20te^{t}dt
tangent of f(x)=4x^2+7,(-3,43)
tangent\:f(x)=4x^{2}+7,(-3,43)
slope ofintercept (-4,-6),(4,-2)
slopeintercept\:(-4,-6),(4,-2)
tangent of f(x)=(-4x)/(x^2+1),(1,-2)
tangent\:f(x)=\frac{-4x}{x^{2}+1},(1,-2)
integral of x/(e^{-3x)}
\int\:\frac{x}{e^{-3x}}dx
integral of tan^2(w)
\int\:\tan^{2}(w)dw
(\partial)/(\partial x)(-ae^{kz}wsin(kx-wt))
\frac{\partial\:}{\partial\:x}(-ae^{kz}w\sin(kx-wt))
y^{''}-5y^'=25t,y(0)=5,y^'(0)=0
y^{\prime\:\prime\:}-5y^{\prime\:}=25t,y(0)=5,y^{\prime\:}(0)=0
integral from 0 to 2 of xsqrt(4-x^2)
\int\:_{0}^{2}x\sqrt{4-x^{2}}dx
integral of (arctan(x))/((1+x^2)^{3/2)}
\int\:\frac{\arctan(x)}{(1+x^{2})^{\frac{3}{2}}}dx
integral of 12x^2(x^3+4)^3
\int\:12x^{2}(x^{3}+4)^{3}dx
derivative of xsqrt(2)
\frac{d}{dx}(x\sqrt{2})
derivative of x^{2/3}-1
\frac{d}{dx}(x^{\frac{2}{3}}-1)
area x,x^1,0,1
area\:x,x^{1},0,1
limit as n approaches infinity of n/4
\lim\:_{n\to\:\infty\:}(\frac{n}{4})
limit as x approaches 0+of x^2ln(3x)
\lim\:_{x\to\:0+}(x^{2}\ln(3x))
integral of 10sqrt(tan(x))sec^4(x)
\int\:10\sqrt{\tan(x)}\sec^{4}(x)dx
(\partial)/(\partial y)(e^{xz})
\frac{\partial\:}{\partial\:y}(e^{xz})
integral of sec^2(5x)
\int\:\sec^{2}(5x)dx
derivative of y=e^{10-7x}
derivative\:y=e^{10-7x}
(\partial)/(\partial x)(2xe^{xy^3})
\frac{\partial\:}{\partial\:x}(2xe^{xy^{3}})
derivative of sqrt(36-y^2)
derivative\:\sqrt{36-y^{2}}
y^{''}-5y^'+6y=cos(2x)+1
y^{\prime\:\prime\:}-5y^{\prime\:}+6y=\cos(2x)+1
limit as x approaches+(-1)-of 2
\lim\:_{x\to\:+(-1)-}(2)
derivative of-(2sec^2(x)/((1+tan(x))^3))
\frac{d}{dx}(-\frac{2\sec^{2}(x)}{(1+\tan(x))^{3}})
tangent of f(x)= 7/(sqrt(x)),\at x=1
tangent\:f(x)=\frac{7}{\sqrt{x}},\at\:x=1
(\partial)/(\partial u)(u+2v)
\frac{\partial\:}{\partial\:u}(u+2v)
derivative of x-2pi
\frac{d}{dx}(x-2π)
derivative of y=x^2+2x-2
derivative\:y=x^{2}+2x-2
y^'=e^{9y-x}
y^{\prime\:}=e^{9y-x}
tangent of f(x)=x^3,\at x=-5
tangent\:f(x)=x^{3},\at\:x=-5
limit as x approaches 0 of 1-cos(3x)
\lim\:_{x\to\:0}(1-\cos(3x))
limit as x approaches infinity of log_{2}(log_{2}(x)-1)
\lim\:_{x\to\:\infty\:}(\log_{2}(\log_{2}(x)-1))
integral from 0 to pi/2 of sin^5(x)
\int\:_{0}^{\frac{π}{2}}\sin^{5}(x)dx
integral from 0 to 2 of 8000te^{-0.6t}
\int\:_{0}^{2}8000te^{-0.6t}dt
integral of (6x^2+3x+10)/(x^3+2x^2+5x)
\int\:\frac{6x^{2}+3x+10}{x^{3}+2x^{2}+5x}dx
tangent of sqrt(x^2+40)
tangent\:\sqrt{x^{2}+40}
derivative of (x^5-2x/(-5))
\frac{d}{dx}(\frac{x^{5}-2x}{-5})
derivative of 7u^e
derivative\:7u^{e}
maclaurin e^{-x^2}
maclaurin\:e^{-x^{2}}
integral of (2x)/((x^2+1)^2)
\int\:\frac{2x}{(x^{2}+1)^{2}}dx
integral from pi/6 to pi/4 of cos(x)
\int\:_{\frac{π}{6}}^{\frac{π}{4}}\cos(x)dx
taylor s(t)=5^t
taylor\:s(t)=5^{t}
derivative of-3tan(x)
\frac{d}{dx}(-3\tan(x))
integral from 7 to 8 of (7/(x^2)-1)
\int\:_{7}^{8}(\frac{7}{x^{2}}-1)dx
integral of ((x^2+1)/(x^2))
\int\:(\frac{x^{2}+1}{x^{2}})dx
derivative of ((x-4)/x)
\frac{d}{dx}(\frac{(x-4)}{x})
(\partial)/(\partial x)(6xsin(8x^2y))
\frac{\partial\:}{\partial\:x}(6x\sin(8x^{2}y))
derivative of-(2x)/((1+x^2)^2)
derivative\:-\frac{2x}{(1+x^{2})^{2}}
derivative of (x^2+2x^5)
\frac{d}{dx}((x^{2}+2x)^{5})
area y=x^2,y=x,y=2
area\:y=x^{2},y=x,y=2
derivative of (1^2/(2^1))
\frac{d}{dx}(\frac{1^{2}}{2^{1}})
sum from n=0 to infinity of (1/2)^{2n}
\sum\:_{n=0}^{\infty\:}(\frac{1}{2})^{2n}
derivative of y= 1/3 e^{3x}
derivative\:y=\frac{1}{3}e^{3x}
integral from 0 to 1 of (2x+1)^4
\int\:_{0}^{1}(2x+1)^{4}dx
derivative of f(x)=-8sin(x)
derivative\:f(x)=-8\sin(x)
integral of (z^2)
\int\:(z^{2})dz
(\partial)/(\partial x)(1/x+1/(1-x))
\frac{\partial\:}{\partial\:x}(\frac{1}{x}+\frac{1}{1-x})
integral of (-2cos(x))
\int\:(-2\cos(x))dx
integral of sin(t/2)t
\int\:\sin(\frac{t}{2})tdt
area 1-x^2,-1,1
area\:1-x^{2},-1,1
d/(da)(tan(a)*cot(a))
\frac{d}{da}(\tan(a)\cdot\:\cot(a))
(d^2y)/(dx^2)-6(dy)/(dx)+9y=sec(3x)
\frac{d^{2}y}{dx^{2}}-6\frac{dy}{dx}+9y=\sec(3x)
derivative of arcsin(e^{3x})
\frac{d}{dx}(\arcsin(e^{3x}))
integral of 6xcos(3x^2)
\int\:6x\cos(3x^{2})dx
(\partial)/(\partial x)((x+y)^z)
\frac{\partial\:}{\partial\:x}((x+y)^{z})
limit as x approaches pi of x
\lim\:_{x\to\:π}(x)
inverse oflaplace 1/(s^2+2*pi*s+pi^2)
inverselaplace\:\frac{1}{s^{2}+2\cdot\:π\cdot\:s+π^{2}}
sum from n=3 to infinity of e^{5-6n}
\sum\:_{n=3}^{\infty\:}e^{5-6n}
(d^2y)/(dx^2)-(dy)/(dx)-2y=0
\frac{d^{2}y}{dx^{2}}-\frac{dy}{dx}-2y=0
derivative of tan(x)-1sec(x)
derivative\:\tan(x)-1\sec(x)
integral of sqrt(y^2+1)
\int\:\sqrt{y^{2}+1}dy
tangent of y=sin(sin(x)),\at x=pi
tangent\:y=\sin(\sin(x)),\at\:x=π
integral of (\sqrt[10]{x})
\int\:(\sqrt[10]{x})dx
normal of y=sqrt(x),(9,3)
normal\:y=\sqrt{x},(9,3)
derivative of (sin(x)+cos(x))/(cos(x))
derivative\:\frac{\sin(x)+\cos(x)}{\cos(x)}
tangent of y=(8x)/(x^2+1),(-1,-4)
tangent\:y=\frac{8x}{x^{2}+1},(-1,-4)
integral of 1/(sqrt(x^2+2x-24))
\int\:\frac{1}{\sqrt{x^{2}+2x-24}}dx
(\partial)/(\partial y)(((x^2y))/(x^2+y^2))
\frac{\partial\:}{\partial\:y}(\frac{(x^{2}y)}{x^{2}+y^{2}})
slope of 6x^2+2xy+2y^2=74,(3,2)
slope\:6x^{2}+2xy+2y^{2}=74,(3,2)
f(t)=\sqrt[3]{t}
f(t)=\sqrt[3]{t}
integral of 1/(sqrt(1-36x^2))
\int\:\frac{1}{\sqrt{1-36x^{2}}}dx
y^{'''}-4y^{''}-y^'+4y=0
y^{\prime\:\prime\:\prime\:}-4y^{\prime\:\prime\:}-y^{\prime\:}+4y=0
limit as x approaches 2 of (3^x-9)/(x-2)
\lim\:_{x\to\:2}(\frac{3^{x}-9}{x-2})
(\partial)/(\partial x)(9xe^{x^2+y^2})
\frac{\partial\:}{\partial\:x}(9xe^{x^{2}+y^{2}})
derivative of 1/5 x^5-2x^3+3x
\frac{d}{dx}(\frac{1}{5}x^{5}-2x^{3}+3x)
limit as x approaches-1 of 6x+3
\lim\:_{x\to\:-1}(6x+3)
limit as x approaches 1 of (e^x)/(1-x)
\lim\:_{x\to\:1}(\frac{e^{x}}{1-x})
limit as x approaches 1 of (1(x))/(1-\sqrt[3]{x)}
\lim\:_{x\to\:1}(\frac{1(x)}{1-\sqrt[3]{x}})
limit as s approaches 0 of 1/s
\lim\:_{s\to\:0}(\frac{1}{s})
integral from 0 to 1 of 2pi(2-y)(7y^2)
\int\:_{0}^{1}2π(2-y)(7y^{2})dy
area x=49-y^2,x=y^2-49
area\:x=49-y^{2},x=y^{2}-49
limit as x approaches 0 of log_{5}(3x)
\lim\:_{x\to\:0}(\log_{5}(3x))
derivative of sin(\sqrt[3]{x})+\sqrt[3]{sin(3x)}
derivative\:\sin(\sqrt[3]{x})+\sqrt[3]{\sin(3x)}
integral of (cos(x))/(7+sin(x))
\int\:\frac{\cos(x)}{7+\sin(x)}dx
integral from-6 to 6 of 3t+4e^{2t}-e^t
\int\:_{-6}^{6}3t+4e^{2t}-e^{t}dt
(\partial)/(\partial y)(xyz+sin(2xy))
\frac{\partial\:}{\partial\:y}(xyz+\sin(2xy))
area 5cos(pix),12x^3-3,0.5,-0.5
area\:5\cos(πx),12x^{3}-3,0.5,-0.5
1
..
119
120
121
122
123
..
1823