You can see your coupon in the
user page
Go To QuillBot
Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
×
Symbolab for Chrome
Snip & solve on any website
Add to Chrome
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
limit as x approaches infinity of-e^{-ax}
\lim\:_{x\to\:\infty\:}(-e^{-ax})
integral of (x^2)/(sqrt(5+2x^3))
\int\:\frac{x^{2}}{\sqrt{5+2x^{3}}}dx
(\partial)/(\partial x)(sin(2x+3y))
\frac{\partial\:}{\partial\:x}(\sin(2x+3y))
tangent of y=7x-x^2
tangent\:y=7x-x^{2}
integral from-1 to 1 of (10)/(x^2)
\int\:_{-1}^{1}\frac{10}{x^{2}}dx
integral from 3 to 12 of (6x+1)
\int\:_{3}^{12}(6x+1)dx
integral of (1/(x^{10)}-x^{10}-1/3)
\int\:(\frac{1}{x^{10}}-x^{10}-\frac{1}{3})dx
derivative of 4t^3cos(t)
derivative\:4t^{3}\cos(t)
integral from-infinity to 12 of re^{r/3}
\int\:_{-\infty\:}^{12}re^{\frac{r}{3}}dr
(\partial)/(\partial t)(xyz^2tan(yt))
\frac{\partial\:}{\partial\:t}(xyz^{2}\tan(yt))
tangent of x^2+xy-y^2=-9,(3,6)
tangent\:x^{2}+xy-y^{2}=-9,(3,6)
maclaurin (2x)/(1+x^2)
maclaurin\:\frac{2x}{1+x^{2}}
area F(x)=ln(2x),y=0,y=2
area\:F(x)=\ln(2x),y=0,y=2
area 5sin(x),5cos(2x),0, pi/2
area\:5\sin(x),5\cos(2x),0,\frac{π}{2}
integral from-3 to 3 of 1/2 (81-x^4)
\int\:_{-3}^{3}\frac{1}{2}(81-x^{4})dx
derivative of sqrt(25x^2-1)
\frac{d}{dx}(\sqrt{25x^{2}-1})
limit as x approaches pi/4 of tan^{tan(2x)}(x)
\lim\:_{x\to\:\frac{π}{4}}(\tan^{\tan(2x)}(x))
derivative of f(x)=sin(5ln(x))
derivative\:f(x)=\sin(5\ln(x))
(dv)/(dv)
\frac{dv}{dv}
limit as x approaches 0+of x^{19x}
\lim\:_{x\to\:0+}(x^{19x})
derivative of arcsin(6x)+arccos(6x)
derivative\:\arcsin(6x)+\arccos(6x)
derivative of x^4-4x^2+3
\frac{d}{dx}(x^{4}-4x^{2}+3)
tangent of (23)/((8x-1)^2)
tangent\:\frac{23}{(8x-1)^{2}}
derivative of x^7
derivative\:x^{7}
derivative of 5/(\sqrt[3]{x^8})
\frac{d}{dx}(\frac{5}{\sqrt[3]{x^{8}}})
integral of (cos(3x))/(sin^2(3x))
\int\:\frac{\cos(3x)}{\sin^{2}(3x)}dx
area xe^x,1<= x<= 7
area\:xe^{x},1\le\:x\le\:7
(\partial)/(\partial x)(x^2y^{1/3})
\frac{\partial\:}{\partial\:x}(x^{2}y^{\frac{1}{3}})
d/(dt)(e^{-t}-e^{-t}t)
\frac{d}{dt}(e^{-t}-e^{-t}t)
f(x)=e^{xcos(x)}
f(x)=e^{x\cos(x)}
derivative of x/(x^2-8)
derivative\:\frac{x}{x^{2}-8}
integral of x-(1/2)^x
\int\:x-(\frac{1}{2})^{x}dx
limit as x approaches infinity of 4^x-1
\lim\:_{x\to\:\infty\:}(4^{x}-1)
limit as x approaches 3 of ((x^2-9))/(2x-6)
\lim\:_{x\to\:3}(\frac{(x^{2}-9)}{2x-6})
limit as x approaches infinity of (2^x)/(3^{x-1)}
\lim\:_{x\to\:\infty\:}(\frac{2^{x}}{3^{x-1}})
integral of sqrt(2-x)
\int\:\sqrt{2-x}dx
derivative of cos(pi/2 x)
\frac{d}{dx}(\cos(\frac{π}{2}x))
integral from-pi to 0 of x
\int\:_{-π}^{0}xdx
integral of 2e^{x^2}
\int\:2e^{x^{2}}dx
2x^2y^'=y^'+4xe^{-y}
2x^{2}y^{\prime\:}=y^{\prime\:}+4xe^{-y}
limit as x approaches 0 of 1/(2x^2+x)
\lim\:_{x\to\:0}(\frac{1}{2x^{2}+x})
integral of 9/(4+9x)
\int\:\frac{9}{4+9x}dx
integral of y/(sqrt(a^2-y^2))
\int\:\frac{y}{\sqrt{a^{2}-y^{2}}}dy
limit as x approaches 0 of x^2csc(x)
\lim\:_{x\to\:0}(x^{2}\csc(x))
derivative of ln(x+\sqrt[5]{x^3})
\frac{d}{dx}(\ln(x)+\sqrt[5]{x^{3}})
limit as x approaches 0 of a^x+a^{-x}
\lim\:_{x\to\:0}(a^{x}+a^{-x})
integral of (3x+4)^6
\int\:(3x+4)^{6}dx
y^'+e^xy=19e^x
y^{\prime\:}+e^{x}y=19e^{x}
(\partial)/(\partial w)((y-w(x+x^2))^2)
\frac{\partial\:}{\partial\:w}((y-w(x+x^{2}))^{2})
limit as x approaches 1/2 of 1/(2x-1)
\lim\:_{x\to\:\frac{1}{2}}(\frac{1}{2x-1})
integral of ((x^3))/(sqrt(x^2+36))
\int\:\frac{(x^{3})}{\sqrt{x^{2}+36}}dx
x^2(dy)/(dx)= 1/4 x^2+y^2
x^{2}\frac{dy}{dx}=\frac{1}{4}x^{2}+y^{2}
limit as t approaches 0 of e^{-7t}i+(t^2)/(sin^2(t))j+tan(3tk)
\lim\:_{t\to\:0}(e^{-7t}i+\frac{t^{2}}{\sin^{2}(t)}j+\tan(3tk))
derivative of f(x)=sin(x^2+1)
derivative\:f(x)=\sin(x^{2}+1)
integral of 2x^3*e^{-x^2}
\int\:2x^{3}\cdot\:e^{-x^{2}}dx
y^{''}+4y=8cos(2x)
y^{\prime\:\prime\:}+4y=8\cos(2x)
(dy)/(dt)=ky(1-y)
\frac{dy}{dt}=ky(1-y)
integral of xsqrt(x^2+5)
\int\:x\sqrt{x^{2}+5}dx
integral of (-x+3)^2
\int\:(-x+3)^{2}dx
(ln(ln(x)))^'
(\ln(\ln(x)))^{\prime\:}
derivative of f(x)=x^3(3-x)^2
derivative\:f(x)=x^{3}(3-x)^{2}
derivative of y=cot^2(sin(x))
derivative\:y=\cot^{2}(\sin(x))
(\partial)/(\partial x)((e/y)^x)
\frac{\partial\:}{\partial\:x}((\frac{e}{y})^{x})
integral from 0 to 4 of (3t^4+3t+2)
\int\:_{0}^{4}(3t^{4}+3t+2)dt
(\partial)/(\partial y)(2x+4y)
\frac{\partial\:}{\partial\:y}(2x+4y)
derivative of f(x)=2sqrt(x)-1
derivative\:f(x)=2\sqrt{x}-1
limit as x approaches infinity of e^{-x}-ln(x)
\lim\:_{x\to\:\infty\:}(e^{-x}-\ln(x))
integral of (8x^2+x+73)/((x+1)(x^2+9))
\int\:\frac{8x^{2}+x+73}{(x+1)(x^{2}+9)}dx
derivative of 7(x^3-x)^4
derivative\:7(x^{3}-x)^{4}
derivative of (3x-8/(x^2-1))
\frac{d}{dx}(\frac{3x-8}{x^{2}-1})
derivative of y= 9/(x^{-6)}
derivative\:y=\frac{9}{x^{-6}}
inverse oflaplace {s/((s-2)(s-3)(s-6))}
inverselaplace\:\left\{\frac{s}{(s-2)(s-3)(s-6)}\right\}
derivative of (x+ae^{3x}+b)
\frac{d}{dx}((x+a)e^{3x}+b)
derivative of 4x^{-3}+6x^{-8/3}
derivative\:4x^{-3}+6x^{-\frac{8}{3}}
(\partial)/(\partial x)(arcsin(3x+y))
\frac{\partial\:}{\partial\:x}(\arcsin(3x+y))
derivative of f(x)=6e^xcos(x)
derivative\:f(x)=6e^{x}\cos(x)
area y^2=x+2,y^2=2-x
area\:y^{2}=x+2,y^{2}=2-x
derivative of f(x)=-7/((x-7)^2)
derivative\:f(x)=-\frac{7}{(x-7)^{2}}
integral of sin^2((2pix)/L)
\int\:\sin^{2}(\frac{2πx}{L})dx
derivative of e^{(-1/(x^2)})
\frac{d}{dx}(e^{\frac{-1}{x^{2}}})
limit as x approaches 3 of (7x^2-3x)/x
\lim\:_{x\to\:3}(\frac{7x^{2}-3x}{x})
1/4 ((dy)/(dt))+10y=5
\frac{1}{4}(\frac{dy}{dt})+10y=5
integral of sec^2(xta)n^2x
\int\:\sec^{2}(xta)n^{2}xdx
tangent of f(x)=x^3-3/2 x^2+x,\at x=1
tangent\:f(x)=x^{3}-\frac{3}{2}x^{2}+x,\at\:x=1
sum from n=2 to infinity of ((-1)^n)/(sqrt(n)ln(n))
\sum\:_{n=2}^{\infty\:}\frac{(-1)^{n}}{\sqrt{n}\ln(n)}
integral of sqrt(4+y^2)
\int\:\sqrt{4+y^{2}}dy
integral of (14)/((x-1)^2(x-2)^2)
\int\:\frac{14}{(x-1)^{2}(x-2)^{2}}dx
f(x)=arcsin(4x)
f(x)=\arcsin(4x)
limit as x approaches infinity of arctan(x^2-x^5)
\lim\:_{x\to\:\infty\:}(\arctan(x^{2}-x^{5}))
tangent of y=e^xln(x),(1,0)
tangent\:y=e^{x}\ln(x),(1,0)
(\partial)/(\partial y)(e^xy^2)
\frac{\partial\:}{\partial\:y}(e^{x}y^{2})
derivative of tan(x-1)
\frac{d}{dx}(\tan(x)-1)
slope of (2.4)(0.8)
slope\:(2.4)(0.8)
(dr)/(dt)=(sec^2(t))/(tan(t)+1)
\frac{dr}{dt}=\frac{\sec^{2}(t)}{\tan(t)+1}
integral of (9/x+6/(x^4))
\int\:(\frac{9}{x}+\frac{6}{x^{4}})dx
(1/(x-2))^'
(\frac{1}{x-2})^{\prime\:}
derivative of y^3+xy^2+y+xcos(3x-2)
\frac{d}{dx}(y^{3}+xy^{2}+y+x\cos(3x)-2)
derivative of ((x^2-4)/(x-2))
\frac{d}{dx}(\frac{(x^{2}-4)}{x-2})
derivative of (1+sqrt(X))/(1-sqrt(X))
derivative\:\frac{1+\sqrt{X}}{1-\sqrt{X}}
integral of e^{cos(25t)}sin(25t)
\int\:e^{\cos(25t)}\sin(25t)dt
1
..
139
140
141
142
143
..
1823