You can see your coupon in the
user page
Go To QuillBot
Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
×
Symbolab for Chrome
Snip & solve on any website
Add to Chrome
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
integral of x^7(x^8-9)^4
\int\:x^{7}(x^{8}-9)^{4}dx
integral of sin^2(θ)cos^2(θ)
\int\:\sin^{2}(θ)\cos^{2}(θ)dθ
limit as x approaches 0 of 1/x-1/(e^x-1)
\lim\:_{x\to\:0}(\frac{1}{x}-\frac{1}{e^{x}-1})
derivative of (x+2e^{2x})
\frac{d}{dx}((x+2)e^{2x})
(\partial)/(\partial x)(xln(y)+y^2z+z^2)
\frac{\partial\:}{\partial\:x}(x\ln(y)+y^{2}z+z^{2})
derivative of f(x)=6x-3
derivative\:f(x)=6x-3
(dx)/(dy)=(2y+sec^2(y))/(2x)
\frac{dx}{dy}=\frac{2y+\sec^{2}(y)}{2x}
integral from 0 to 0.5 of 250x
\int\:_{0}^{0.5}250xdx
integral of x/(1+2x)
\int\:\frac{x}{1+2x}dx
derivative of-(x+3(x-9)^2)
\frac{d}{dx}(-(x+3)(x-9)^{2})
integral of x*e^{xy}
\int\:x\cdot\:e^{xy}dy
integral of 16xe^{4x}
\int\:16xe^{4x}dx
tangent of sqrt(x^2+16)
tangent\:\sqrt{x^{2}+16}
factor 3x^3-12x^2+15x
factor\:3x^{3}-12x^{2}+15x
laplacetransform f(t)=t^2
laplacetransform\:f(t)=t^{2}
integral of 8y^{-3}
\int\:8y^{-3}dy
tangent of f(x)= 8/(x^2+4),\at x=4
tangent\:f(x)=\frac{8}{x^{2}+4},\at\:x=4
(\partial)/(\partial y)(x^2+y^2-4y)
\frac{\partial\:}{\partial\:y}(x^{2}+y^{2}-4y)
integral of xarctan(16x)
\int\:x\arctan(16x)dx
(\partial)/(\partial y)(x+x/(x^2+y^2))
\frac{\partial\:}{\partial\:y}(x+\frac{x}{x^{2}+y^{2}})
(dy)/(dx)=4e^{-3x}
\frac{dy}{dx}=4e^{-3x}
integral of e^x*sin(e^x)
\int\:e^{x}\cdot\:\sin(e^{x})dx
limit as x approaches 3-of-(3)^2+5(3)-5
\lim\:_{x\to\:3-}(-(3)^{2}+5(3)-5)
tangent of 8sqrt(x)-2
tangent\:8\sqrt{x}-2
integral from 0 to 1 of (3e^{-x}-e^{-2x})
\int\:_{0}^{1}(3e^{-x}-e^{-2x})dx
y^{''}+6y^'+9y=27+e^{-3x}
y^{\prime\:\prime\:}+6y^{\prime\:}+9y=27+e^{-3x}
integral of e^{3ln(4x-5)}
\int\:e^{3\ln(4x-5)}dx
f(x)=sqrt(5-3x)
f(x)=\sqrt{5-3x}
y^'-1=y^2
y^{\prime\:}-1=y^{2}
inverse oflaplace 2/(s(s^2+2s+2))
inverselaplace\:\frac{2}{s(s^{2}+2s+2)}
integral of 1/(1+\frac{2z){L}}
\int\:\frac{1}{1+\frac{2z}{L}}dz
integral of 1/(sqrt(x^2+6x+25))
\int\:\frac{1}{\sqrt{x^{2}+6x+25}}dx
maclaurin 1/(x+1)
maclaurin\:\frac{1}{x+1}
integral of (\sqrt[3]{x^2}+1)
\int\:(\sqrt[3]{x^{2}}+1)dx
integral of sin^2((pix)/L)
\int\:\sin^{2}(\frac{πx}{L})dx
t^2y^{''}-3ty^'+4y=0
t^{2}y^{\prime\:\prime\:}-3ty^{\prime\:}+4y=0
(\partial)/(\partial y)((x+y)^5+(x-y)^5)
\frac{\partial\:}{\partial\:y}((x+y)^{5}+(x-y)^{5})
tangent of f(x)=x^2+5,(-5,30)
tangent\:f(x)=x^{2}+5,(-5,30)
xy^{''}-2y^'+4=0
xy^{\prime\:\prime\:}-2y^{\prime\:}+4=0
slope of (-3.7)(-4.12)
slope\:(-3.7)(-4.12)
tangent of f(x)=x^3(3-x)^4,\at x=2
tangent\:f(x)=x^{3}(3-x)^{4},\at\:x=2
limit as x approaches 100 of 20+0.188x
\lim\:_{x\to\:100}(20+0.188x)
integral of ysqrt(6+12y-36y^2)
\int\:y\sqrt{6+12y-36y^{2}}dy
derivative of (-1+x^2^{-1})
\frac{d}{dx}((-1+x^{2})^{-1})
integral from 1 to 5 of 6xln(x)
\int\:_{1}^{5}6x\ln(x)dx
integral of cos(x+nx)
\int\:\cos(x+nx)dx
(dy)/(dt)=ysin(t)
\frac{dy}{dt}=y\sin(t)
integral of (5+u)/u
\int\:\frac{5+u}{u}du
derivative of \sqrt[3]{1+\sqrt[3]{1+\sqrt[3]{x}}}
\frac{d}{dx}(\sqrt[3]{1+\sqrt[3]{1+\sqrt[3]{x}}})
integral from-2 to 2 of 1/(x^2-1)
\int\:_{-2}^{2}\frac{1}{x^{2}-1}dx
integral of (18)/x
\int\:\frac{18}{x}dx
tangent of f(x)=x^2-2x,\at x=3
tangent\:f(x)=x^{2}-2x,\at\:x=3
(\partial)/(\partial y)(e^x+ye^{xy})
\frac{\partial\:}{\partial\:y}(e^{x}+ye^{xy})
(\partial)/(\partial x)(e^y+x+x^2+2)
\frac{\partial\:}{\partial\:x}(e^{y}+x+x^{2}+2)
(dy)/(-yln(y/k))=cdx
\frac{dy}{-y\ln(\frac{y}{k})}=cdx
(dy)/(dx)+3y=30
\frac{dy}{dx}+3y=30
y^{''}+9y=-6tan(3x)
y^{\prime\:\prime\:}+9y=-6\tan(3x)
derivative of (2(e^{3sqrt(x)}))
\frac{d}{dx}((2)(e^{3\sqrt{x}}))
integral from 0 to 1 of t^2cos(npit)
\int\:_{0}^{1}t^{2}\cos(nπt)dt
(dy)/(dx)=sin^2(x)
\frac{dy}{dx}=\sin^{2}(x)
integral from 1 to 2 of x/((x+1)^2)
\int\:_{1}^{2}\frac{x}{(x+1)^{2}}dx
derivative of 3/((x+2^2))
\frac{d}{dx}(\frac{3}{(x+2)^{2}})
y^'=e^{4x}-3x
y^{\prime\:}=e^{4x}-3x
derivative of 2cot(x/2)
\frac{d}{dx}(2\cot(\frac{x}{2}))
y^'=x^2-y
y^{\prime\:}=x^{2}-y
36y^{''}-y=xe^{x/6},y(0)=1,y^'(0)=0
36y^{\prime\:\prime\:}-y=xe^{\frac{x}{6}},y(0)=1,y^{\prime\:}(0)=0
f^'(x)=1
f^{\prime\:}(x)=1
integral of 64x
\int\:64xdx
tangent of 2x^3+8x^2-5x+9
tangent\:2x^{3}+8x^{2}-5x+9
area 8-2x,x^3-7x^2+12x,[1,4]
area\:8-2x,x^{3}-7x^{2}+12x,[1,4]
limit as h approaches 0 of sqrt(h)
\lim\:_{h\to\:0}(\sqrt{h})
integral from 1 to 3 of 9r^3ln(r)
\int\:_{1}^{3}9r^{3}\ln(r)dr
(sec^3(x))^'
(\sec^{3}(x))^{\prime\:}
integral of sin(-7x)
\int\:\sin(-7x)dx
integral from 0 to 2 of (x^3)/2
\int\:_{0}^{2}\frac{x^{3}}{2}dx
(\partial)/(\partial x)(sqrt(x)e^{xy})
\frac{\partial\:}{\partial\:x}(\sqrt{x}e^{xy})
y^'=(xy(4-y))/(1+x)
y^{\prime\:}=\frac{xy(4-y)}{1+x}
derivative of x^4-25x^2+144
\frac{d}{dx}(x^{4}-25x^{2}+144)
(\partial)/(\partial x)(x(x^2+y^2)^{1/2})
\frac{\partial\:}{\partial\:x}(x(x^{2}+y^{2})^{\frac{1}{2}})
derivative of 1+e^x
derivative\:1+e^{x}
y^{''}+2y^'+y=8e^{-t}
y^{\prime\:\prime\:}+2y^{\prime\:}+y=8e^{-t}
(dy)/(dx)=-(2xy+y^2+1)/(x^2+2xy)
\frac{dy}{dx}=-\frac{2xy+y^{2}+1}{x^{2}+2xy}
sum from k=1 to infinity of (2^k)/(k!)
\sum\:_{k=1}^{\infty\:}\frac{2^{k}}{k!}
derivative of x^2e^y
\frac{d}{dx}(x^{2}e^{y})
derivative of sqrt(x)-4\sqrt[3]{x}
derivative\:\sqrt{x}-4\sqrt[3]{x}
integral of s4^s
\int\:s4^{s}ds
integral from 0 to pi/2 of (cos(x))^2
\int\:_{0}^{\frac{π}{2}}(\cos(x))^{2}dx
sum from n=1 to infinity of 4^{1/(2^n)}
\sum\:_{n=1}^{\infty\:}4^{\frac{1}{2^{n}}}
derivative of y=(2^x)^8
derivative\:y=(2^{x})^{8}
integral of (x^2+2)^42x
\int\:(x^{2}+2)^{4}2xdx
4y^{''}+4y^'+8y=0
4y^{\prime\:\prime\:}+4y^{\prime\:}+8y=0
limit as x approaches 0 of cos(9x)
\lim\:_{x\to\:0}(\cos(9x))
sum from n=1 to infinity of n2^{-n}
\sum\:_{n=1}^{\infty\:}n2^{-n}
integral of xye^{y^2x}
\int\:xye^{y^{2}x}dy
derivative of 3/(e^x+e^{-x)}
derivative\:\frac{3}{e^{x}+e^{-x}}
derivative of ke^x
\frac{d}{dx}(ke^{x})
xsin(y/x)(dy)/(dx)=ysin(y/x)+x
x\sin(\frac{y}{x})\frac{dy}{dx}=y\sin(\frac{y}{x})+x
integral of 1/(a^2+v^2)
\int\:\frac{1}{a^{2}+v^{2}}dv
limit as x approaches 4+of 2/(x-4)
\lim\:_{x\to\:4+}(\frac{2}{x-4})
integral from 1 to e^5 of x^2ln(x)
\int\:_{1}^{e^{5}}x^{2}\ln(x)dx
1
..
599
600
601
602
603
..
1823