You can see your coupon in the
user page
Go To QuillBot
Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
×
Symbolab for Chrome
Snip & solve on any website
Add to Chrome
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
limit as x approaches 0 of 2x^x
\lim\:_{x\to\:0}(2x^{x})
derivative of 1/(10x^{9/10)}
derivative\:\frac{1}{10x^{\frac{9}{10}}}
integral of ln(sqrt(x-1))
\int\:\ln(\sqrt{x-1})dx
limit as n approaches infinity of n/(6^n)
\lim\:_{n\to\:\infty\:}(\frac{n}{6^{n}})
derivative of arctan^2(x)
\frac{d}{dx}(\arctan^{2}(x))
integral of y+y^2cos(x)
\int\:y+y^{2}\cos(x)dx
derivative of (8x^2+8+4)/(sqrt(x))
derivative\:\frac{8x^{2}+8+4}{\sqrt{x}}
integral of (x+5)sqrt(10x+x^2)
\int\:(x+5)\sqrt{10x+x^{2}}dx
tangent of f(x)=x+4/x ,(4,5)
tangent\:f(x)=x+\frac{4}{x},(4,5)
(\partial)/(\partial x)(ysin(xy))
\frac{\partial\:}{\partial\:x}(y\sin(xy))
(dy)/(dx)=(9x^2-6)/(x^2)
\frac{dy}{dx}=\frac{9x^{2}-6}{x^{2}}
(\partial)/(\partial y)(xe^y-x^5+y-3)
\frac{\partial\:}{\partial\:y}(xe^{y}-x^{5}+y-3)
derivative of x/(x^2+y^2+1)
\frac{d}{dx}(\frac{x}{x^{2}+y^{2}+1})
(d^2)/(dx^2)(e^{-3x})
\frac{d^{2}}{dx^{2}}(e^{-3x})
integral from 0 to 1 of-8x5^x
\int\:_{0}^{1}-8x5^{x}dx
(\partial)/(\partial y)(e^ycos(x)-y^2)
\frac{\partial\:}{\partial\:y}(e^{y}\cos(x)-y^{2})
integral of cos^8(θ)sin(θ)
\int\:\cos^{8}(θ)\sin(θ)dθ
slope of y-3=5(x-2)y-3=5(x-2)
slope\:y-3=5(x-2)y-3=5(x-2)
(\partial)/(\partial x)(z^2y^2-e^x)
\frac{\partial\:}{\partial\:x}(z^{2}y^{2}-e^{x})
(\partial)/(\partial y)(y/(x^2-y^2))
\frac{\partial\:}{\partial\:y}(\frac{y}{x^{2}-y^{2}})
integral from 1 to infinity of x^{-1}
\int\:_{1}^{\infty\:}x^{-1}dx
tangent of f(x)= 1/(x-2),(1,-1)
tangent\:f(x)=\frac{1}{x-2},(1,-1)
derivative of \sqrt[4]{x}+1/(x^4)
derivative\:\sqrt[4]{x}+\frac{1}{x^{4}}
integral of sin(7x)sin(4x)
\int\:\sin(7x)\sin(4x)dx
(\partial)/(\partial y)(e^{-x^2-y^2})
\frac{\partial\:}{\partial\:y}(e^{-x^{2}-y^{2}})
limit as x approaches 3 of (tan(x-3))/(3e^{x-3)-x}
\lim\:_{x\to\:3}(\frac{\tan(x-3)}{3e^{x-3}-x})
derivative of 1/(x^2+4)
derivative\:\frac{1}{x^{2}+4}
derivative of (tan(x)/(x^2))
\frac{d}{dx}(\frac{\tan(x)}{x^{2}})
tangent of f(x)=(4x)/(x+3),(1,1)
tangent\:f(x)=\frac{4x}{x+3},(1,1)
d/(dθ)(cos(θ)-θsin(θ))
\frac{d}{dθ}(\cos(θ)-θ\sin(θ))
area 9x^2,8x^4-8x^2
area\:9x^{2},8x^{4}-8x^{2}
(dy)/(dx)+2x^2=0
\frac{dy}{dx}+2x^{2}=0
integral of (e^x)/(e^x+6)
\int\:\frac{e^{x}}{e^{x}+6}dx
derivative of xe^{-1/x}
derivative\:xe^{-\frac{1}{x}}
x(e^{y/x}-1)(dy)/(dx)=e^{y/x}(y-x)
x(e^{\frac{y}{x}}-1)\frac{dy}{dx}=e^{\frac{y}{x}}(y-x)
derivative of (e^x/(7x^3))
\frac{d}{dx}(\frac{e^{x}}{7x^{3}})
integral of (sin(x))/(cos(x)-cos^2(x))
\int\:\frac{\sin(x)}{\cos(x)-\cos^{2}(x)}dx
(dy)/(dx)=((1-y))/(1-x)
\frac{dy}{dx}=\frac{(1-y)}{1-x}
integral of 4cos(2θ-5)
\int\:4\cos(2θ-5)dθ
integral of x+ln(x)
\int\:x+\ln(x)dx
limit as x approaches 0+of-x+1
\lim\:_{x\to\:0+}(-x+1)
y^'= y/x+(y/x)^2
y^{\prime\:}=\frac{y}{x}+(\frac{y}{x})^{2}
derivative of \sqrt[3]{t}
derivative\:\sqrt[3]{t}
integral of sqrt(x)-(x-2)
\int\:\sqrt{x}-(x-2)dx
derivative of ln(w)
derivative\:\ln(w)
d/(dt)(acos(t)+t^2sin(t))
\frac{d}{dt}(a\cos(t)+t^{2}\sin(t))
derivative of g(t)=sqrt(3t+\sqrt{5t+9)}
derivative\:g(t)=\sqrt{3t+\sqrt{5t+9}}
(2x+8y)dx+(8x+4y)dy=0
(2x+8y)dx+(8x+4y)dy=0
derivative of f(x)= x/(x^2-5)
derivative\:f(x)=\frac{x}{x^{2}-5}
limit as x approaches-1 of (x^3+1)/(x+1)
\lim\:_{x\to\:-1}(\frac{x^{3}+1}{x+1})
tangent of f(x)= 4/(3x-1),\at x=3
tangent\:f(x)=\frac{4}{3x-1},\at\:x=3
derivative of ln(4x^3+5x^2+2x+5)
derivative\:\ln(4x^{3}+5x^{2}+2x+5)
area y=5-x^2,y=17-7x
area\:y=5-x^{2},y=17-7x
integral of (x+5)/(x^2+16)
\int\:\frac{x+5}{x^{2}+16}dx
derivative of f(x)=((x^2+3))/x
derivative\:f(x)=\frac{(x^{2}+3)}{x}
slope ofintercept (-1,1),(-2,-1)
slopeintercept\:(-1,1),(-2,-1)
derivative of y=x+5
derivative\:y=x+5
x((dy)/(dx))-y=x^2sin(x)
x(\frac{dy}{dx})-y=x^{2}\sin(x)
sqrt(y)dx+(x-1)dy=0,y(2)=9
\sqrt{y}dx+(x-1)dy=0,y(2)=9
derivative of y=(x^2+8x+3)/(sqrt(x))
derivative\:y=\frac{x^{2}+8x+3}{\sqrt{x}}
derivative of ({g}(x(sqrt(x)))/(ax^2+x))
\frac{d}{dx}(\frac{{g}(x)(\sqrt{x})}{ax^{2}+x})
tangent of 7/(x^2+3)
tangent\:\frac{7}{x^{2}+3}
derivative of x^2sin(x+2xcos(x))
\frac{d}{dx}(x^{2}\sin(x)+2x\cos(x))
(dy)/(dx)=(2y)/(2x+1),y(0)=e
\frac{dy}{dx}=\frac{2y}{2x+1},y(0)=e
integral from 0 to 4 of xe^{x^2}
\int\:_{0}^{4}xe^{x^{2}}dx
integral from 0 to a of xsqrt(x^2+a^2)
\int\:_{0}^{a}x\sqrt{x^{2}+a^{2}}dx
derivative of sin(2(x))
\frac{d}{dx}(\sin(2)(x))
derivative of-y/(x+e^y)
derivative\:-\frac{y}{x+e^{y}}
integral from 0 to 3 of (6t)/((t-4)^2)
\int\:_{0}^{3}\frac{6t}{(t-4)^{2}}dt
integral of (2xe^x)/((x+1)^2)
\int\:\frac{2xe^{x}}{(x+1)^{2}}dx
(\partial)/(\partial x)(y-x^2ye^{-y})
\frac{\partial\:}{\partial\:x}(y-x^{2}ye^{-y})
taylor sin(x^2),0
taylor\:\sin(x^{2}),0
y^{''}+y^'-2y=sin(x)
y^{\prime\:\prime\:}+y^{\prime\:}-2y=\sin(x)
(dy)/(dx)-y=e^{2x}y^3
\frac{dy}{dx}-y=e^{2x}y^{3}
(d^2y)/(dx^2)+y=x^2+2
\frac{d^{2}y}{dx^{2}}+y=x^{2}+2
integral of 1/((t+4)(t-1))
\int\:\frac{1}{(t+4)(t-1)}dt
(xy-y^2)dx-x^2dy=0
(xy-y^{2})dx-x^{2}dy=0
(\partial)/(\partial x)(-5y^2sin(xy^2))
\frac{\partial\:}{\partial\:x}(-5y^{2}\sin(xy^{2}))
(\partial)/(\partial y)(20(y-x^2))
\frac{\partial\:}{\partial\:y}(20(y-x^{2}))
limit as x approaches 1 of (x^2+1)/(x+5)
\lim\:_{x\to\:1}(\frac{x^{2}+1}{x+5})
(x+y)^2dx+(2xy+x^2-6)dy=0,y(1)=1
(x+y)^{2}dx+(2xy+x^{2}-6)dy=0,y(1)=1
derivative of (-6/x)
\frac{d}{dx}(\frac{-6}{x})
(d^2)/(dx^2)((3x+5)/(x^2-x))
\frac{d^{2}}{dx^{2}}(\frac{3x+5}{x^{2}-x})
integral of ln(3x+9)
\int\:\ln(3x+9)dx
integral of (sin(x))/(cos^2(x)+cos(x)-2)
\int\:\frac{\sin(x)}{\cos^{2}(x)+\cos(x)-2}dx
inverse oflaplace (s^2-3)/(s+1*s+2)
inverselaplace\:\frac{s^{2}-3}{s+1\cdot\:s+2}
limit as x approaches 0 of x^5e^{-x^4}
\lim\:_{x\to\:0}(x^{5}e^{-x^{4}})
(\partial)/(\partial x)(e^{-8t}cos(pix))
\frac{\partial\:}{\partial\:x}(e^{-8t}\cos(πx))
area-x+5,x^2
area\:-x+5,x^{2}
3ydx+(x-xy)dy=0
3ydx+(x-xy)dy=0
integral of-0.01(1024pi)^2cos(1024pi)x
\int\:-0.01(1024π)^{2}\cos(1024π)xdx
integral of-cos^2(x)
\int\:-\cos^{2}(x)dx
integral of (1-cos(x))/x
\int\:\frac{1-\cos(x)}{x}dx
(\partial)/(\partial x)((x^2-1)(y+2))
\frac{\partial\:}{\partial\:x}((x^{2}-1)(y+2))
integral of x-(e^x)/(y^2)-2y
\int\:x-\frac{e^{x}}{y^{2}}-2ydy
taylor x^{11/2},1.2
taylor\:x^{\frac{11}{2}},1.2
integral of 1/(1-8x)
\int\:\frac{1}{1-8x}dx
tangent of f(x)=(9x)/((x+1)^2),(0,0)
tangent\:f(x)=\frac{9x}{(x+1)^{2}},(0,0)
derivative of xln(x+2y)
\frac{d}{dx}(x\ln(x+2y))
d/(dt)(t^3-t)
\frac{d}{dt}(t^{3}-t)
1
..
623
624
625
626
627
..
1823