You can see your coupon in the
user page
Go To QuillBot
Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
×
Symbolab for Chrome
Snip & solve on any website
Add to Chrome
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
integral of 1/(sin^2(y))
\int\:\frac{1}{\sin^{2}(y)}dy
integral of sqrt(121-x^2)
\int\:\sqrt{121-x^{2}}dx
inverse oflaplace sin(6(t-pi/6))
inverselaplace\:\sin(6(t-\frac{π}{6}))
limit as x approaches-infinity of 2x^5
\lim\:_{x\to\:-\infty\:}(2x^{5})
tangent of y= 1/(sqrt(x)),\at x=a
tangent\:y=\frac{1}{\sqrt{x}},\at\:x=a
(\partial)/(\partial x)(4tan(xy))
\frac{\partial\:}{\partial\:x}(4\tan(xy))
derivative of f(x)=tan(2sqrt(x))
derivative\:f(x)=\tan(2\sqrt{x})
tangent of f(x)=xsqrt(x),\at x=36
tangent\:f(x)=x\sqrt{x},\at\:x=36
taylor 1/(1+2x),0
taylor\:\frac{1}{1+2x},0
derivative of (ln(x)((x^7+3)/(x^3-10)))
\frac{d}{dx}((\ln(x))(\frac{x^{7}+3}{x^{3}-10}))
integral of (3x-7)^9
\int\:(3x-7)^{9}dx
integral of 1/(4x^2-9)
\int\:\frac{1}{4x^{2}-9}dx
derivative of 3sin(xcos(x))
\frac{d}{dx}(3\sin(x)\cos(x))
derivative of f(x)=x^{-1}-1/x
derivative\:f(x)=x^{-1}-\frac{1}{x}
derivative of 2/(3x-1)
\frac{d}{dx}(\frac{2}{3x-1})
integral of y^2cos(x)+z^3
\int\:y^{2}\cos(x)+z^{3}dx
f^{''}(x)=4x^2+8x-17
f^{\prime\:\prime\:}(x)=4x^{2}+8x-17
(\partial)/(\partial x)(4x^2+5y^3-3)
\frac{\partial\:}{\partial\:x}(4x^{2}+5y^{3}-3)
(\partial)/(\partial x)(e^xsin(yz))
\frac{\partial\:}{\partial\:x}(e^{x}\sin(yz))
derivative of e^{-0.3x}
\frac{d}{dx}(e^{-0.3x})
(\partial)/(\partial x)(e^{xy}+xye^{xy})
\frac{\partial\:}{\partial\:x}(e^{xy}+xye^{xy})
derivative of (ax^3+bx+c/(dx^3-e))
\frac{d}{dx}(\frac{ax^{3}+bx+c}{dx^{3}-e})
integral from 0 to 1 of (6+x)/(1+x^2)
\int\:_{0}^{1}\frac{6+x}{1+x^{2}}dx
tangent of f(x)=(x^3)/(x+1),\at x=1
tangent\:f(x)=\frac{x^{3}}{x+1},\at\:x=1
derivative of tan(pix-1+e^{cos(x)})
\frac{d}{dx}(\tan(πx-1)+e^{\cos(x)})
derivative of y=(x-1)^3
derivative\:y=(x-1)^{3}
integral of tan(x)ln(cos(x))
\int\:\tan(x)\ln(\cos(x))dx
integral of (x^2)/(x^2+4)
\int\:\frac{x^{2}}{x^{2}+4}dx
area y=x^2-1,y=2x-1,y=x+1
area\:y=x^{2}-1,y=2x-1,y=x+1
tangent of y= 2/(1+x^2),(3,0.2)
tangent\:y=\frac{2}{1+x^{2}},(3,0.2)
x((dy)/(dx))-y=x^5+1
x(\frac{dy}{dx})-y=x^{5}+1
derivative of f(x)=x^2-5x
derivative\:f(x)=x^{2}-5x
limit as x approaches 0+of 8sin(x)ln(x)
\lim\:_{x\to\:0+}(8\sin(x)\ln(x))
integral of (2x+1)/((x^2+x+1)^{3/2)}
\int\:\frac{2x+1}{(x^{2}+x+1)^{\frac{3}{2}}}dx
integral of 1/(6x+1)
\int\:\frac{1}{6x+1}dx
integral from 0 to 1/2 of 2/(1+4x^2)
\int\:_{0}^{\frac{1}{2}}\frac{2}{1+4x^{2}}dx
y^'=(2x(y-1))/(x^2+3)
y^{\prime\:}=\frac{2x(y-1)}{x^{2}+3}
integral of 19sin^3(x)cos^2(x)
\int\:19\sin^{3}(x)\cos^{2}(x)dx
tangent of f(x)= 6/(x^2),\at x=1
tangent\:f(x)=\frac{6}{x^{2}},\at\:x=1
y^{''}-3y^'-10y=0
y^{\prime\:\prime\:}-3y^{\prime\:}-10y=0
taylor 1/((1+x)^2),1
taylor\:\frac{1}{(1+x)^{2}},1
derivative of 5x
\frac{d}{dx}(5x)
integral of 4x^2+1
\int\:4x^{2}+1dx
(\partial)/(\partial x)(x^2-4xy+y^2+6y+3)
\frac{\partial\:}{\partial\:x}(x^{2}-4xy+y^{2}+6y+3)
integral of tan^5(x)sec^{11}(x)
\int\:\tan^{5}(x)\sec^{11}(x)dx
limit as x approaches 0 of 2x*sin(x)
\lim\:_{x\to\:0}(2x\cdot\:\sin(x))
tangent of y=x^2+x,\at x=-2
tangent\:y=x^{2}+x,\at\:x=-2
integral from 0.5 to t+4 of 3
\int\:_{0.5}^{t+4}3dx
integral from-1 to 3 of (4-2x)
\int\:_{-1}^{3}(4-2x)dx
integral from 0 to 9 of k(9-x)
\int\:_{0}^{9}k(9-x)
derivative of arctan((a^2-x^3/(b^2)))
\frac{d}{dx}(\arctan(\frac{a^{2}-x^{3}}{b^{2}}))
derivative of sqrt(x)*(x^5+x^4+3x+2)
\frac{d}{dx}(\sqrt{x}\cdot\:(x^{5}+x^{4}+3x+2))
(\partial ^2)/(\partial {K)(b)\partial b}(a{K}(b)(b)^aL^b)
\frac{\partial\:^{2}}{\partial\:{K}(b)\partial\:b}(a{K}(b)(b)^{a}L^{b})
(dy)/(dx)-6xy=sin(x^2)
\frac{dy}{dx}-6xy=\sin(x^{2})
derivative of (4x/((3x^2-1)^2))
\frac{d}{dx}(\frac{4x}{(3x^{2}-1)^{2}})
integral of 4x-3x^2
\int\:4x-3x^{2}dx
laplacetransform f(t)=t(sin(9t)+e^{-2t})
laplacetransform\:f(t)=t(\sin(9t)+e^{-2t})
integral from 0 to pi of sin^2(6x)
\int\:_{0}^{π}\sin^{2}(6x)dx
(\partial)/(\partial x)(x(x+3y+2))
\frac{\partial\:}{\partial\:x}(x(x+3y+2))
(dy)/(dx)=20+28x+40y+56xy
\frac{dy}{dx}=20+28x+40y+56xy
integral of 5/x
\int\:\frac{5}{x}dx
derivative of g(x)=sqrt(6x+8)
derivative\:g(x)=\sqrt{6x+8}
integral of 2x-y
\int\:2x-ydx
x^2y^'+y^'=xy
x^{2}y^{\prime\:}+y^{\prime\:}=xy
area y=x^2+30x+225,y=17(x+15)
area\:y=x^{2}+30x+225,y=17(x+15)
integral of (5x-2)/(x^2+6x+8)
\int\:\frac{5x-2}{x^{2}+6x+8}dx
y^{''}-4y=6e^{(-t)},y(0)=0,y^'(0)=0
y^{\prime\:\prime\:}-4y=6e^{(-t)},y(0)=0,y^{\prime\:}(0)=0
xy^'-y+2=0
xy^{\prime\:}-y+2=0
integral of (2sin(x)-3cos(x))
\int\:(2\sin(x)-3\cos(x))dx
laplacetransform 20t^2
laplacetransform\:20t^{2}
limit as x approaches 17 of x^2-3x+1
\lim\:_{x\to\:17}(x^{2}-3x+1)
derivative of 1/3 (x^2+2)^{3/2}
derivative\:\frac{1}{3}(x^{2}+2)^{\frac{3}{2}}
integral of (256)/(x^3-16x^2)
\int\:\frac{256}{x^{3}-16x^{2}}dx
derivative of 4x+7
\frac{d}{dx}(4x+7)
inverse oflaplace 1/(s^4-9)
inverselaplace\:\frac{1}{s^{4}-9}
inverse oflaplace 1/((s+1)(s^2+5))
inverselaplace\:\frac{1}{(s+1)(s^{2}+5)}
derivative of (sin(2x))/(e^{x^2)}
derivative\:\frac{\sin(2x)}{e^{x^{2}}}
(dy)/(dx)= y/x+3x+5
\frac{dy}{dx}=\frac{y}{x}+3x+5
limit as x approaches-7 of-4x
\lim\:_{x\to\:-7}(-4x)
derivative of (x^2+x-2/(x^2-3x+4))
\frac{d}{dx}(\frac{x^{2}+x-2}{x^{2}-3x+4})
integral of (2x+3)/(x^2+3x)
\int\:\frac{2x+3}{x^{2}+3x}dx
(\partial)/(\partial x)(e^{(x+y)})
\frac{\partial\:}{\partial\:x}(e^{(x+y)})
(\partial)/(\partial x)(10xy-16x)
\frac{\partial\:}{\partial\:x}(10xy-16x)
derivative of 0.5x
\frac{d}{dx}(0.5x)
limit as x approaches-3-of g(x)
\lim\:_{x\to\:-3-}(g(x))
derivative of (6x^2+4x+4/(sqrt(x)))
\frac{d}{dx}(\frac{6x^{2}+4x+4}{\sqrt{x}})
limit as x approaches pi/2 of sec(x)
\lim\:_{x\to\:\frac{π}{2}}(\sec(x))
limit as x approaches 0+of ln(x)*tan(x)
\lim\:_{x\to\:0+}(\ln(x)\cdot\:\tan(x))
x(dy)/(dx)+2y=2e^x
x\frac{dy}{dx}+2y=2e^{x}
inverse oflaplace 5/(pis^2)
inverselaplace\:\frac{5}{πs^{2}}
tangent of 8e^x
tangent\:8e^{x}
y^'+(3y)/x =-1/x
y^{\prime\:}+\frac{3y}{x}=-\frac{1}{x}
(\partial)/(\partial x)(2x^3+xy^2)
\frac{\partial\:}{\partial\:x}(2x^{3}+xy^{2})
1/x (dy)/(dx)=e^{x+y}
\frac{1}{x}\frac{dy}{dx}=e^{x+y}
derivative of 1/(2xsqrt(ln(x+1)))
\frac{d}{dx}(\frac{1}{2x\sqrt{\ln(x)+1}})
integral of cot^3(x)*csc^3(x)
\int\:\cot^{3}(x)\cdot\:\csc^{3}(x)dx
sum from n=1 to infinity of (2n!)/(n^n)
\sum\:_{n=1}^{\infty\:}\frac{2n!}{n^{n}}
derivative of sqrt(r)(2r+1)
derivative\:\sqrt{r}(2r+1)
(dy)/(dt)=5(y-t^2)
\frac{dy}{dt}=5(y-t^{2})
integral of (x^3)/((2+x^4)^9)
\int\:\frac{x^{3}}{(2+x^{4})^{9}}dx
1
..
643
644
645
646
647
..
1823