You can see your coupon in the
user page
Go To QuillBot
Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
×
Symbolab for Chrome
Snip & solve on any website
Add to Chrome
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
derivative of ln^3(2x+5)
\frac{d}{dx}(\ln^{3}(2x+5))
xy^'+y=x^4y^3
xy^{\prime\:}+y=x^{4}y^{3}
derivative of (6x-7^3(8x^2+9)^2)
\frac{d}{dx}((6x-7)^{3}(8x^{2}+9)^{2})
integral from 0 to 5 of (5-x)
\int\:_{0}^{5}(5-x)dx
xydy=ydx
xydy=ydx
area 4/x , 4/(x^2),x=7
area\:\frac{4}{x},\frac{4}{x^{2}},x=7
9y^{''}-y=xe^{x/3}
9y^{\prime\:\prime\:}-y=xe^{\frac{x}{3}}
implicit (dy)/(dx),x+y=xy
implicit\:\frac{dy}{dx},x+y=xy
derivative of 2x^2-1/x
\frac{d}{dx}(2x^{2}-\frac{1}{x})
integral from 0 to 8 of 1
\int\:_{0}^{8}1
limit as x approaches 3 of x^2-4x+10
\lim\:_{x\to\:3}(x^{2}-4x+10)
integral of tan^3(5x)sec(5x)
\int\:\tan^{3}(5x)\sec(5x)dx
integral of (x-1)/(x^2+x-6)
\int\:\frac{x-1}{x^{2}+x-6}dx
(x+y)^2dx+(2xy+x^2-3)dy=0,y(1)=1
(x+y)^{2}dx+(2xy+x^{2}-3)dy=0,y(1)=1
limit as x approaches 3/2 of (4x^2+12x+9)/(2x-3)
\lim\:_{x\to\:\frac{3}{2}}(\frac{4x^{2}+12x+9}{2x-3})
(dy)/(dx)=((y^2+y))/(x^2+x)
\frac{dy}{dx}=\frac{(y^{2}+y)}{x^{2}+x}
integral from 0 to infinity of xe^{-x/2}
\int\:_{0}^{\infty\:}xe^{-\frac{x}{2}}dx
integral from 0 to pi of 5e^xsin(x)
\int\:_{0}^{π}5e^{x}\sin(x)dx
sum from n=1 to infinity of 2
\sum\:_{n=1}^{\infty\:}2
derivative of ((x+6)/(x-6))^5
derivative\:(\frac{x+6}{x-6})^{5}
derivative of e^{-x/3}
\frac{d}{dx}(e^{-\frac{x}{3}})
integral of (1-x^2)^2x^2
\int\:(1-x^{2})^{2}x^{2}dx
area y=3x^4-3x^2,y=8x^2
area\:y=3x^{4}-3x^{2},y=8x^{2}
derivative of y=(2x-3)^4(x^2+x+1)^5
derivative\:y=(2x-3)^{4}(x^{2}+x+1)^{5}
derivative of a^{6x^2}
\frac{d}{dx}(a^{6x^{2}})
integral of (x^2)/(4x)
\int\:\frac{x^{2}}{4x}dx
x^2y^'+3xy=e^x
x^{2}y^{\prime\:}+3xy=e^{x}
2y^{''}-2y^'+13y=0
2y^{\prime\:\prime\:}-2y^{\prime\:}+13y=0
integral of 1/(5000x-x^2)
\int\:\frac{1}{5000x-x^{2}}dx
integral from 0 to 9 of |sqrt(2x+8)-x|
\int\:_{0}^{9}\left|\sqrt{2x+8}-x\right|dx
integral from 0 to pi/4 of 1-4sin^2(x)
\int\:_{0}^{\frac{π}{4}}1-4\sin^{2}(x)dx
integral of 2usin(u)
\int\:2u\sin(u)du
(dy}{dx}=\frac{x+y)/x
\frac{dy}{dx}=\frac{x+y}{x}
limit as x approaches 5 of x^5-9x+1
\lim\:_{x\to\:5}(x^{5}-9x+1)
integral of-4sin(x)
\int\:-4\sin(x)dx
limit as t approaches 2 of t^3i+t^4j+t^5k
\lim\:_{t\to\:2}(t^{3}i+t^{4}j+t^{5}k)
(\partial)/(\partial x)(x^4+3xy^2-3y^2)
\frac{\partial\:}{\partial\:x}(x^{4}+3xy^{2}-3y^{2})
integral from 0 to 4 of (1+3x-x^2)
\int\:_{0}^{4}(1+3x-x^{2})dx
derivative of-4x^5+6x^7
derivative\:-4x^{5}+6x^{7}
limit as x approaches+0 of (e^x-1)/(5x)
\lim\:_{x\to\:+0}(\frac{e^{x}-1}{5x})
tangent of f(x)=19x-1.86x^2,\at x=1
tangent\:f(x)=19x-1.86x^{2},\at\:x=1
(\partial}{\partial x}(\frac{10)/x)
\frac{\partial\:}{\partial\:x}(\frac{10}{x})
tangent of f(x)=(2x)/(x+1),\at x=1
tangent\:f(x)=\frac{2x}{x+1},\at\:x=1
(dy)/(dx)+4xy^2=0
\frac{dy}{dx}+4xy^{2}=0
integral of (4x^3)/(x^4+1)
\int\:\frac{4x^{3}}{x^{4}+1}dx
derivative of ((2t+1)^{3/2})/3
derivative\:\frac{(2t+1)^{\frac{3}{2}}}{3}
(dy)/(dx)=2^xln(2)+2/(x^2+1)
\frac{dy}{dx}=2^{x}\ln(2)+\frac{2}{x^{2}+1}
area x^2+4,-x^2-1,-2,3
area\:x^{2}+4,-x^{2}-1,-2,3
(\partial)/(\partial x)(cos(-t+y+e^x))
\frac{\partial\:}{\partial\:x}(\cos(-t+y+e^{x}))
derivative of ln(cos(ln(x)))
\frac{d}{dx}(\ln(\cos(\ln(x))))
(dy)/(dt)=3te^{-y}
\frac{dy}{dt}=3te^{-y}
derivative of y=xarcsin(2x)
derivative\:y=x\arcsin(2x)
(\partial)/(\partial x)(3x^3y-4/x+2y^{1/2})
\frac{\partial\:}{\partial\:x}(3x^{3}y-\frac{4}{x}+2y^{\frac{1}{2}})
integral from 1/7 to 3 of 8xln(7x)
\int\:_{\frac{1}{7}}^{3}8x\ln(7x)dx
tangent of y=3x+6cos(x),\at (pi/3)
tangent\:y=3x+6\cos(x),\at\:(\frac{π}{3})
inverse oflaplace s/(s^2+2s+3)
inverselaplace\:\frac{s}{s^{2}+2s+3}
derivative of f(x)=(2x^3-3x+1)/x
derivative\:f(x)=\frac{2x^{3}-3x+1}{x}
slope of y=x^2-2
slope\:y=x^{2}-2
laplacetransform e^{-t}(t^2)
laplacetransform\:e^{-t}(t^{2})
derivative of f(x)=sqrt(x)+\sqrt[7]{x}
derivative\:f(x)=\sqrt{x}+\sqrt[7]{x}
derivative of-x^3+3x
\frac{d}{dx}(-x^{3}+3x)
(\partial)/(\partial x)((x+y)^5+(x-y)^5)
\frac{\partial\:}{\partial\:x}((x+y)^{5}+(x-y)^{5})
tangent of f(x)=tan^2(x),\at x=-pi/4
tangent\:f(x)=\tan^{2}(x),\at\:x=-\frac{π}{4}
derivative of f(x)=13xe^x
derivative\:f(x)=13xe^{x}
derivative of y=\sqrt[3]{1+8x}
derivative\:y=\sqrt[3]{1+8x}
integral of 1/(sqrt(2pi))e^{-(x^2)/2}
\int\:\frac{1}{\sqrt{2π}}e^{-\frac{x^{2}}{2}}dx
integral of (5x+12)/(x(x^2+4))
\int\:\frac{5x+12}{x(x^{2}+4)}dx
integral of (x+1)^{-8}x
\int\:(x+1)^{-8}xdx
limit as x approaches 8 of sqrt(7x-4)
\lim\:_{x\to\:8}(\sqrt{7x-4})
sum from n=0 to infinity of 1.002^n
\sum\:_{n=0}^{\infty\:}1.002^{n}
integral from 0 to 2 of xe^{x^2}
\int\:_{0}^{2}xe^{x^{2}}dx
integral of (3x^2-7)/(x^3)
\int\:\frac{3x^{2}-7}{x^{3}}dx
area y=x+2,y=-1,x=2,x=5
area\:y=x+2,y=-1,x=2,x=5
derivative of sqrt(9z-8)
derivative\:\sqrt{9z-8}
integral of sqrt(x^4+4x^2)
\int\:\sqrt{x^{4}+4x^{2}}dx
integral of (x-7)/(x^2-x-12)
\int\:\frac{x-7}{x^{2}-x-12}dx
(\partial)/(\partial x)(8xe^{5xy})
\frac{\partial\:}{\partial\:x}(8xe^{5xy})
sum from n=0 to infinity of (n!)/(11^n)
\sum\:_{n=0}^{\infty\:}\frac{n!}{11^{n}}
derivative of y=2e^{2e^x+x}
derivative\:y=2e^{2e^{x}+x}
integral of (x^3+1)/(x(x-1)^3)
\int\:\frac{x^{3}+1}{x(x-1)^{3}}dx
tangent of f(x)=3x^4+2x-1,(2,51)
tangent\:f(x)=3x^{4}+2x-1,(2,51)
integral of (tan(x))^7(sec(x))^2
\int\:(\tan(x))^{7}(\sec(x))^{2}dx
(\partial)/(\partial x)(4ln(xy))
\frac{\partial\:}{\partial\:x}(4\ln(xy))
tangent of x^3-6x^2-34x+40,\at x=6
tangent\:x^{3}-6x^{2}-34x+40,\at\:x=6
integral of-kx
\int\:-kxdx
integral of 1/(x(x+1))
\int\:\frac{1}{x(x+1)}dx
limit as x approaches 0 of ((x+5))/(3x)
\lim\:_{x\to\:0}(\frac{(x+5)}{3x})
derivative of y=(t^2+3)e^t
derivative\:y=(t^{2}+3)e^{t}
tangent of y=3+4x^2-2x^3
tangent\:y=3+4x^{2}-2x^{3}
y^{''}+9y=tsin(5t)
y^{\prime\:\prime\:}+9y=t\sin(5t)
derivative of \sqrt[5]{5x-4}
\frac{d}{dx}(\sqrt[5]{5x-4})
integral of 5e^{2x+e^{2x}}
\int\:5e^{2x+e^{2x}}dx
integral of sqrt(x^2+y^2)
\int\:\sqrt{x^{2}+y^{2}}dx
limit as x approaches 5 of 1/x
\lim\:_{x\to\:5}(\frac{1}{x})
derivative of 1+sin(x)
\frac{d}{dx}(1+\sin(x))
derivative of f(x)=(72)/x
derivative\:f(x)=\frac{72}{x}
derivative of (x+3^2)
\frac{d}{dx}((x+3)^{2})
tangent of 4x^2-5x
tangent\:4x^{2}-5x
integral of (e^{2y})/(e^{2y)-1}
\int\:\frac{e^{2y}}{e^{2y}-1}dy
slope of y^4-4y^2=x^4-9x^2,(3,2)
slope\:y^{4}-4y^{2}=x^{4}-9x^{2},(3,2)
1
..
645
646
647
648
649
..
1823