You can see your coupon in the
user page
Go To QuillBot
Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
×
Symbolab for Chrome
Snip & solve on any website
Add to Chrome
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
integral of sec^6(x)tan^6(x)
\int\:\sec^{6}(x)\tan^{6}(x)dx
tangent of ln(x^4+3)
tangent\:\ln(x^{4}+3)
integral from 0 to 1 of 2pi(x)(e^{-x^2})
\int\:_{0}^{1}2π(x)(e^{-x^{2}})dx
derivative of (3-x)^2
derivative\:(3-x)^{2}
derivative of e^x-cot(x)
derivative\:e^{x}-\cot(x)
inverse oflaplace 1/((s(s^2+s+1)))
inverselaplace\:\frac{1}{(s(s^{2}+s+1))}
integral of 1/(4e^{-2x)+e^{2x}}
\int\:\frac{1}{4e^{-2x}+e^{2x}}dx
(dy)/(dx)=((x^3+2y^3))/(xy^2)
\frac{dy}{dx}=\frac{(x^{3}+2y^{3})}{xy^{2}}
taylor x^{(1/2)}
taylor\:x^{(\frac{1}{2})}
limit as x approaches 0+of 2x-1
\lim\:_{x\to\:0+}(2x-1)
derivative of nln(1/x)
\frac{d}{dx}(n\ln(\frac{1}{x}))
(\partial)/(\partial x)((47x^2)/((x-y)^2))
\frac{\partial\:}{\partial\:x}(\frac{47x^{2}}{(x-y)^{2}})
integral of x/(sqrt(x^2+y^2))
\int\:\frac{x}{\sqrt{x^{2}+y^{2}}}dx
limit as x approaches 0+of 0^x
\lim\:_{x\to\:0+}(0^{x})
y^'=y(xy^5+5)
y^{\prime\:}=y(xy^{5}+5)
integral of sec^4(x)tan^6(x)
\int\:\sec^{4}(x)\tan^{6}(x)dx
t^2((dy)/(dt))+y=0
t^{2}(\frac{dy}{dt})+y=0
(\partial)/(\partial y)(ye^z)
\frac{\partial\:}{\partial\:y}(ye^{z})
(dy)/(dx)+xy=xy^{-3}
\frac{dy}{dx}+xy=xy^{-3}
limit as x approaches-4pi of 1+csc(x)
\lim\:_{x\to\:-4π}(1+\csc(x))
area x^2-6x,-x^2+2x
area\:x^{2}-6x,-x^{2}+2x
derivative of y=x-6
derivative\:y=x-6
integral of 5x^4-7x^6-3x^2
\int\:5x^{4}-7x^{6}-3x^{2}dx
(\partial}{\partial u}(\frac{v+u)/2)
\frac{\partial\:}{\partial\:u}(\frac{v+u}{2})
derivative of 3x^3y
\frac{d}{dx}(3x^{3}y)
integral from 0 to 3 of 1/(sqrt(x))
\int\:_{0}^{3}\frac{1}{\sqrt{x}}dx
integral from 0 to t of xe^{-x}
\int\:_{0}^{t}xe^{-x}dx
xy^'-y=2x^2-2x-2
xy^{\prime\:}-y=2x^{2}-2x-2
xy^'-y=x,y(1)=10
xy^{\prime\:}-y=x,y(1)=10
integral from 0 to 2 of pi(3x^2)^2
\int\:_{0}^{2}π(3x^{2})^{2}dx
(\partial)/(\partial x)(4x^2+3y^4)
\frac{\partial\:}{\partial\:x}(4x^{2}+3y^{4})
limit as x approaches 1-of 1/x-1
\lim\:_{x\to\:1-}(\frac{1}{x}-1)
y^{''}+9y=3sec(3t)
y^{\prime\:\prime\:}+9y=3\sec(3t)
f(x)=cos(x^2)*2x
f(x)=\cos(x^{2})\cdot\:2x
area y=x+1,y=9-x^2,x=-1,x=2
area\:y=x+1,y=9-x^{2},x=-1,x=2
integral of (sin^4(x)cos^2(x))
\int\:(\sin^{4}(x)\cos^{2}(x))dx
integral of (4x^2+3x+4)/((x^2+1)^2)
\int\:\frac{4x^{2}+3x+4}{(x^{2}+1)^{2}}dx
integral from-1 to 0 of (30e^{1/x})/(x^3)
\int\:_{-1}^{0}\frac{30e^{\frac{1}{x}}}{x^{3}}dx
area 11-x-2x^2, 8/(x^3)
area\:11-x-2x^{2},\frac{8}{x^{3}}
integral of 4/(x^2)
\int\:\frac{4}{x^{2}}dx
derivative of f(x)=2e^{3-4x}
derivative\:f(x)=2e^{3-4x}
integral from 0 to pi of 7sin^2(xco)s^4x
\int\:_{0}^{π}7\sin^{2}(xco)s^{4}xdx
sum from n=0 to infinity of (n^4)/(3^n)
\sum\:_{n=0}^{\infty\:}\frac{n^{4}}{3^{n}}
(\partial)/(\partial z)(rsin(t))
\frac{\partial\:}{\partial\:z}(r\sin(t))
derivative of arctan(cos(7x))
derivative\:\arctan(\cos(7x))
derivative of sqrt(x)+sqrt(y)+6
derivative\:\sqrt{x}+\sqrt{y}+6
integral from 0 to 8 of e^{-0.25t}
\int\:_{0}^{8}e^{-0.25t}dt
integral of sin(3x)sin(6x)
\int\:\sin(3x)\sin(6x)dx
derivative of [x^2(x^2+8x)]^6
derivative\:[x^{2}(x^{2}+8x)]^{6}
x^2(dy)/(dx)=y^2
x^{2}\frac{dy}{dx}=y^{2}
derivative of (x^4)/(16)+1/(2x^2)
derivative\:\frac{x^{4}}{16}+\frac{1}{2x^{2}}
integral of 1/(sqrt(16-4x^2))
\int\:\frac{1}{\sqrt{16-4x^{2}}}dx
integral of 1/(2y+1)
\int\:\frac{1}{2y+1}dy
limit as x approaches infinity of (-3)/x
\lim\:_{x\to\:\infty\:}(\frac{-3}{x})
inverse oflaplace 1/(s(s^2+1))
inverselaplace\:\frac{1}{s(s^{2}+1)}
limit as x approaches-2 of 4x^2
\lim\:_{x\to\:-2}(4x^{2})
integral of (0.7y^3+10+2y^{-3})
\int\:(0.7y^{3}+10+2y^{-3})dy
derivative of f(x)=x^2-2x-3
derivative\:f(x)=x^{2}-2x-3
derivative of sin(cot(x))
\frac{d}{dx}(\sin(\cot(x)))
tangent of y=e^xcos(x)
tangent\:y=e^{x}\cos(x)
inverse oflaplace (7s+5)/((s+2)(s-1))
inverselaplace\:\frac{7s+5}{(s+2)(s-1)}
integral from 0 to 1 of (x^3)
\int\:_{0}^{1}(x^{3})dx
taylor xcos(2x)
taylor\:x\cos(2x)
integral of ((ln^2(x^2)))/x
\int\:\frac{(\ln^{2}(x^{2}))}{x}dx
integral of (8x^3)/(sqrt(0.2x^4+8000))
\int\:\frac{8x^{3}}{\sqrt{0.2x^{4}+8000}}dx
(\partial)/(\partial y)(x^y+y)
\frac{\partial\:}{\partial\:y}(x^{y}+y)
limit as x approaches 3 of 1/(x+3)
\lim\:_{x\to\:3}(\frac{1}{x+3})
derivative of f(x)=4x^{10}e^x
derivative\:f(x)=4x^{10}e^{x}
integral of (t-2t^4)/(sqrt(t))
\int\:\frac{t-2t^{4}}{\sqrt{t}}dt
(\partial)/(\partial x)((x)^2+(y)^4)
\frac{\partial\:}{\partial\:x}((x)^{2}+(y)^{4})
derivative of (x^3)/(e^{1/x)}
derivative\:\frac{x^{3}}{e^{\frac{1}{x}}}
(\partial)/(\partial z)((xy^2)/(z^3))
\frac{\partial\:}{\partial\:z}(\frac{xy^{2}}{z^{3}})
(\partial)/(\partial x)((y-5x)/(y^2+4x^2))
\frac{\partial\:}{\partial\:x}(\frac{y-5x}{y^{2}+4x^{2}})
(\partial)/(\partial x)(x^{0.5}y)
\frac{\partial\:}{\partial\:x}(x^{0.5}y)
y^{''}-y^'-6y=0,y(0)=1,y^'(0)=4
y^{\prime\:\prime\:}-y^{\prime\:}-6y=0,y(0)=1,y^{\prime\:}(0)=4
integral from 0 to 3 of e^x
\int\:_{0}^{3}e^{x}dx
tangent of f(x)=sqrt(x+16),\at x=1
tangent\:f(x)=\sqrt{x+16},\at\:x=1
(dy)/(dx)=(y)
\frac{dy}{dx}=(y)
y^{''}+2y=3,y(0)=-1,y(0)=2
y^{\prime\:\prime\:}+2y=3,y(0)=-1,y(0)=2
(\partial)/(\partial t)(xz^2t)
\frac{\partial\:}{\partial\:t}(xz^{2}t)
(dy}{dx}=\frac{2x)/y+2/y+1/(xy)
\frac{dy}{dx}=\frac{2x}{y}+\frac{2}{y}+\frac{1}{xy}
derivative of y=arcsin(8x+1)
derivative\:y=\arcsin(8x+1)
sum from n=1 to infinity of (-3^n)/(8^n)
\sum\:_{n=1}^{\infty\:}\frac{-3^{n}}{8^{n}}
derivative of e^{2x}-3x
derivative\:e^{2x}-3x
3e^xtan(y)dx+(2-e^x)sec^2(y)dy=0
3e^{x}\tan(y)dx+(2-e^{x})\sec^{2}(y)dy=0
tangent of y=4x^3-4x(-1)
tangent\:y=4x^{3}-4x(-1)
derivative of ln(arccsc(x))
derivative\:\ln(\arccsc(x))
(\partial)/(\partial y)(x^3y^5)
\frac{\partial\:}{\partial\:y}(x^{3}y^{5})
y^'=(x-2)/(y-4)
y^{\prime\:}=\frac{x-2}{y-4}
tangent of f(x)=sqrt(x^2+9),\at x=-4
tangent\:f(x)=\sqrt{x^{2}+9},\at\:x=-4
integral of xos(x)
\int\:xos(x)dx
sum from n=1 to infinity of (e^n)/n
\sum\:_{n=1}^{\infty\:}\frac{e^{n}}{n}
ty^'+2y=t^2-t+1,y(1)=0.5
ty^{\prime\:}+2y=t^{2}-t+1,y(1)=0.5
derivative of sin^2(14x)
derivative\:\sin^{2}(14x)
tangent of f(x)=2x^2-4,\at x=8
tangent\:f(x)=2x^{2}-4,\at\:x=8
(\partial)/(\partial x)(zarctan(x/y))
\frac{\partial\:}{\partial\:x}(z\arctan(\frac{x}{y}))
integral of 6(x+2)*ln(x+2)
\int\:6(x+2)\cdot\:\ln(x+2)dx
derivative of (3x+2^2)
\frac{d}{dx}((3x+2)^{2})
integral of 4/y
\int\:\frac{4}{y}dy
derivative of x^3+1
derivative\:x^{3}+1
1
..
714
715
716
717
718
..
1823