You can see your coupon in the
user page
Go To QuillBot
Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
AI Chat
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
integral of (x^2-x+1)/x
\int\:\frac{x^{2}-x+1}{x}dx
(x-9)y^'+y=x^2-10
(x-9)y^{\prime\:}+y=x^{2}-10
integral of 1/(x^2+xsqrt(x))
\int\:\frac{1}{x^{2}+x\sqrt{x}}dx
limit as x approaches 7 of 2
\lim\:_{x\to\:7}(2)
tangent of f(x)= 5/x ,\at x=3
tangent\:f(x)=\frac{5}{x},\at\:x=3
integral of 36x(9x^2-7)^3
\int\:36x(9x^{2}-7)^{3}dx
integral of 5tan(5x)
\int\:5\tan(5x)dx
limit as x approaches 4-of x+1
\lim\:_{x\to\:4-}(x+1)
(\partial)/(\partial x)(x^2+y^2-2x)
\frac{\partial\:}{\partial\:x}(x^{2}+y^{2}-2x)
derivative of-4sin^2(x)
\frac{d}{dx}(-4\sin^{2}(x))
integral of 16cos^2(x)
\int\:16\cos^{2}(x)dx
y^{''}-4y=((e^{2x}))/((x))
y^{\prime\:\prime\:}-4y=\frac{(e^{2x})}{(x)}
limit as x approaches-3 of-x^2-x+4
\lim\:_{x\to\:-3}(-x^{2}-x+4)
limit as x approaches 0 of \sqrt[x]{2}
\lim\:_{x\to\:0}(\sqrt[x]{2})
derivative of (2x-1)ln(2x-1)
derivative\:(2x-1)\ln(2x-1)
implicit (dy)/(dx),y^5=x^8
implicit\:\frac{dy}{dx},y^{5}=x^{8}
integral of x(5^{-x^2})
\int\:x(5^{-x^{2}})dx
integral of 1-sqrt(x)
\int\:1-\sqrt{x}dx
integral of (3x^4-4x^3+6x^2-x/2+3)
\int\:(3x^{4}-4x^{3}+6x^{2}-\frac{x}{2}+3)dx
integral of 8tan(x)sin(y)cos(y)
\int\:8\tan(x)\sin(y)\cos(y)dx
derivative of (2x^2-7^5-(1+4x^3)^5)
\frac{d}{dx}((2x^{2}-7)^{5}-(1+4x^{3})^{5})
derivative of (3x)/(e^x)
derivative\:\frac{3x}{e^{x}}
(x*e^x)^'
(x\cdot\:e^{x})^{\prime\:}
derivative of-xcos(3x)
\frac{d}{dx}(-x\cos(3x))
integral of 2/(x^3sqrt(x^4-25))
\int\:\frac{2}{x^{3}\sqrt{x^{4}-25}}dx
integral of 1/(x^3sqrt(x^2-4))
\int\:\frac{1}{x^{3}\sqrt{x^{2}-4}}dx
integral of 9x^2-30x+15
\int\:9x^{2}-30x+15dx
(\partial)/(\partial x)(x*sin(y-z))
\frac{\partial\:}{\partial\:x}(x\cdot\:\sin(y-z))
d/(dt)((\sqrt[3]{t})/5)
\frac{d}{dt}(\frac{\sqrt[3]{t}}{5})
(\partial)/(\partial x)(6-(x^2+y^2)^{1/5})
\frac{\partial\:}{\partial\:x}(6-(x^{2}+y^{2})^{\frac{1}{5}})
(\partial)/(\partial y)(x*e^{xy+1})
\frac{\partial\:}{\partial\:y}(x\cdot\:e^{xy+1})
derivative of y=x^{-1}
derivative\:y=x^{-1}
y^'= 1/(xy)
y^{\prime\:}=\frac{1}{xy}
tangent of f(x)=8x^2-3,\at x=3
tangent\:f(x)=8x^{2}-3,\at\:x=3
derivative of f(0)=(cos(x))/(x^2-1)
derivative\:f(0)=\frac{\cos(x)}{x^{2}-1}
integral from 1 to 4 of 7e^{sqrt(x)}
\int\:_{1}^{4}7e^{\sqrt{x}}dx
sum from n=1 to infinity of (2^n)/(10^n)
\sum\:_{n=1}^{\infty\:}\frac{2^{n}}{10^{n}}
(\partial ^2)/(\partial y^2)(xy^{10}+x^2+y^4)
\frac{\partial\:^{2}}{\partial\:y^{2}}(xy^{10}+x^{2}+y^{4})
derivative of f(x)=x^{-1/2}+x^{1/2}
derivative\:f(x)=x^{-\frac{1}{2}}+x^{\frac{1}{2}}
inverse oflaplace 1/(s^3+s^2+s)
inverselaplace\:\frac{1}{s^{3}+s^{2}+s}
derivative of y=x^3-sqrt(x)
derivative\:y=x^{3}-\sqrt{x}
derivative of f(x)=cos(sqrt(4t+12))
derivative\:f(x)=\cos(\sqrt{4t+12})
limit as x approaches 0 of (y^{1-x})/(1-x)
\lim\:_{x\to\:0}(\frac{y^{1-x}}{1-x})
y^{''}-6y^'+2y=0,y(0)=0,y^'(0)=1
y^{\prime\:\prime\:}-6y^{\prime\:}+2y=0,y(0)=0,y^{\prime\:}(0)=1
limit as x approaches 5 of sqrt(x^2+4)
\lim\:_{x\to\:5}(\sqrt{x^{2}+4})
integral of (3x^2-3)/(x^3-3x)
\int\:\frac{3x^{2}-3}{x^{3}-3x}dx
3x(dy)/(dx)+5y=10
3x\frac{dy}{dx}+5y=10
integral of tan^6(9x)sec^4(9x)
\int\:\tan^{6}(9x)\sec^{4}(9x)dx
integral from 0 to 3 of pi(2sqrt(5y))^2
\int\:_{0}^{3}π(2\sqrt{5y})^{2}dy
normal of y=F4x-x^2,(1,3)
normal\:y=F4x-x^{2},(1,3)
integral of sin^3(1-2x)cos^3(1-2x)
\int\:\sin^{3}(1-2x)\cos^{3}(1-2x)dx
derivative of 3x-4x^{9/10}
\frac{d}{dx}(3x-4x^{\frac{9}{10}})
tangent of y=(9x^2-6x+2)(1+2x),\at x=1
tangent\:y=(9x^{2}-6x+2)(1+2x),\at\:x=1
derivative of asqrt(1+x)
\frac{d}{dx}(a\sqrt{1+x})
area sqrt(x)+9,0.25x+9
area\:\sqrt{x}+9,0.25x+9
derivative of |3x-4|
\frac{d}{dx}(\left|3x-4\right|)
integral of (x^2)/(sqrt(10-3x^3))
\int\:\frac{x^{2}}{\sqrt{10-3x^{3}}}dx
integral of (90x^2sin(2+6x^3))
\int\:(90x^{2}\sin(2+6x^{3}))dx
derivative of sqrt((3x+7/(5+2x)))
\frac{d}{dx}(\sqrt{\frac{3x+7}{5+2x}})
derivative of (ln(x+1)^2-e^{x^2})
\frac{d}{dx}((\ln(x+1))^{2}-e^{x^{2}})
integral of |4y+1|
\int\:\left|4y+1\right|dy
y^'+7y=t+e^{-6t}
y^{\prime\:}+7y=t+e^{-6t}
2xdx+dy=0
2xdx+dy=0
sum from n=0 to infinity of 5(0.7)^{n-1}
\sum\:_{n=0}^{\infty\:}5(0.7)^{n-1}
integral of e^{4x}
\int\:e^{4x}dx
integral of ((-1)^k)/((2k+1)!)(2x)^{2k}
\int\:\frac{(-1)^{k}}{(2k+1)!}(2x)^{2k}dx
(dx)/(dt)=x+t
\frac{dx}{dt}=x+t
derivative of 3/(sqrt((45+36)^3))
derivative\:\frac{3}{\sqrt{(45+36)^{3}}}
derivative of e^{x^7}
derivative\:e^{x^{7}}
derivative of x 2/3
\frac{d}{dx}(x\frac{2}{3})
integral of 1/(xsqrt(4x^2-9))
\int\:\frac{1}{x\sqrt{4x^{2}-9}}dx
limit as x approaches 0 of (e^x-1)/(x^5)
\lim\:_{x\to\:0}(\frac{e^{x}-1}{x^{5}})
(\partial)/(\partial x)(ln(x^2+y^2+1))
\frac{\partial\:}{\partial\:x}(\ln(x^{2}+y^{2}+1))
(\partial)/(\partial y)(ln(x+z))
\frac{\partial\:}{\partial\:y}(\ln(x+z))
derivative of y=2x-4
derivative\:y=2x-4
derivative of 1/(sqrt(x^2+5))
\frac{d}{dx}(\frac{1}{\sqrt{x^{2}+5}})
limit as x approaches 1 of (x^5-1)/(x-1)
\lim\:_{x\to\:1}(\frac{x^{5}-1}{x-1})
derivative of f(x)=xsin(2^x)
derivative\:f(x)=x\sin(2^{x})
1/x e^ytan(y)y^'=e^{x+y}
\frac{1}{x}e^{y}\tan(y)y^{\prime\:}=e^{x+y}
(\partial)/(\partial y)((4x)/(x^2+y^2))
\frac{\partial\:}{\partial\:y}(\frac{4x}{x^{2}+y^{2}})
integral of 1/2 (cos(x))^2
\int\:\frac{1}{2}(\cos(x))^{2}dx
tangent of f(x)=(40)/x ,(1,40)
tangent\:f(x)=\frac{40}{x},(1,40)
integral of ((x+1)/(sqrt(x)))
\int\:(\frac{x+1}{\sqrt{x}})dx
integral of 1/2 x^5
\int\:\frac{1}{2}x^{5}dx
limit as x approaches pi/2+of 2e^{tan(x)}
\lim\:_{x\to\:\frac{π}{2}+}(2e^{\tan(x)})
tangent of f(x)=3x^4-8x^2,(-1,5)
tangent\:f(x)=3x^{4}-8x^{2},(-1,5)
(\partial)/(\partial x)(-3xyln(xy))
\frac{\partial\:}{\partial\:x}(-3xy\ln(xy))
(\partial)/(\partial x)((xy^2)/(z^3))
\frac{\partial\:}{\partial\:x}(\frac{xy^{2}}{z^{3}})
y^{''}=-y
y^{\prime\:\prime\:}=-y
integral of x-7
\int\:x-7dx
limit as x approaches+0 of (e^{x^2}-1)/x
\lim\:_{x\to\:+0}(\frac{e^{x^{2}}-1}{x})
derivative of (x^2+25/x)
\frac{d}{dx}(\frac{x^{2}+25}{x})
(\partial)/(\partial z)(ln(1+z^2))
\frac{\partial\:}{\partial\:z}(\ln(1+z^{2}))
integral of-(6000)/((3x+50)^2)
\int\:-\frac{6000}{(3x+50)^{2}}dx
limit as x approaches 15 of sqrt(2)
\lim\:_{x\to\:15}(\sqrt{2})
taylor e^{2x},1
taylor\:e^{2x},1
(\partial)/(\partial x)(x^2-4y)
\frac{\partial\:}{\partial\:x}(x^{2}-4y)
y(dy)/(dx)-e^{y^2}*x*cos(x)=0
y\frac{dy}{dx}-e^{y^{2}}\cdot\:x\cdot\:\cos(x)=0
derivative of-(50/(x^3)+5/(x^2))
\frac{d}{dx}(-\frac{50}{x^{3}}+\frac{5}{x^{2}})
integral of 4x^2sin(2x)
\int\:4x^{2}\sin(2x)dx
1
..
913
914
915
916
917
..
1823