You can see your coupon in the
user page
Go To QuillBot
Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
AI Chat
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
integral from 1 to 8 of sqrt(x)ln(x)
\int\:_{1}^{8}\sqrt{x}\ln(x)dx
limit as x approaches 0 of (|x-1|)/(x-1)
\lim\:_{x\to\:0}(\frac{\left|x-1\right|}{x-1})
f(x)=sin^2(3x+2)
f(x)=\sin^{2}(3x+2)
(e^{2x}+e^{-x})^'
(e^{2x}+e^{-x})^{\prime\:}
slope of y=-3-5x^2
slope\:y=-3-5x^{2}
laplacetransform tcos(3t)
laplacetransform\:t\cos(3t)
integral of-x^{2/3}
\int\:-x^{\frac{2}{3}}dx
integral from 0 to 24 of sqrt(6x)
\int\:_{0}^{24}\sqrt{6x}dx
tangent of f(2.1)=3x^2-4x+1,(2,0)
tangent\:f(2.1)=3x^{2}-4x+1,(2,0)
integral of cos(x)sin^3(x)
\int\:\cos(x)\sin^{3}(x)dx
derivative of (e^{y^2})/((2y+1)^5)
derivative\:\frac{e^{y^{2}}}{(2y+1)^{5}}
derivative of 2/3 x^{3/2}-1/2 x^{1/2}
\frac{d}{dx}(\frac{2}{3}x^{\frac{3}{2}}-\frac{1}{2}x^{\frac{1}{2}})
integral of ((1-2x))/(x^2)
\int\:\frac{(1-2x)}{x^{2}}dx
derivative of 1/4 e^{-x}+e^x
\frac{d}{dx}(\frac{1}{4}e^{-x}+e^{x})
derivative of f(x)=xsqrt(x+1)
derivative\:f(x)=x\sqrt{x+1}
limit as x approaches 0 of (7^x-1)/x
\lim\:_{x\to\:0}(\frac{7^{x}-1}{x})
integral of ((5+sqrt(x)+x))/x
\int\:\frac{(5+\sqrt{x}+x)}{x}dx
y^{''}+y=3sec^3(t)
y^{\prime\:\prime\:}+y=3\sec^{3}(t)
integral from-11 to-4 of 1/x
\int\:_{-11}^{-4}\frac{1}{x}dx
limit as x approaches 0-of ([x])/x
\lim\:_{x\to\:0-}(\frac{[x]}{x})
integral from 0 to 9 of pi(x-1)
\int\:_{0}^{9}π(x-1)dx
integral of 3/(x^4)sqrt(8-1/(x^3))
\int\:\frac{3}{x^{4}}\sqrt{8-\frac{1}{x^{3}}}dx
derivative of \sqrt[3]{2x+1}
\frac{d}{dx}(\sqrt[3]{2x+1})
integral of 2cos^2(x)tan^2(x)
\int\:2\cos^{2}(x)\tan^{2}(x)dx
f(x)=(ln(x))^4
f(x)=(\ln(x))^{4}
(d^2)/(dx^2)(cos(2x))
\frac{d^{2}}{dx^{2}}(\cos(2x))
integral of (x^2)/(sqrt(3-x^2))
\int\:\frac{x^{2}}{\sqrt{3-x^{2}}}dx
derivative of 5y^2(4y^2+7)^{6/5}
derivative\:5y^{2}(4y^{2}+7)^{\frac{6}{5}}
integral of sqrt(-x^2+1)
\int\:\sqrt{-x^{2}+1}dx
(\partial)/(\partial x)(10sin(x))
\frac{\partial\:}{\partial\:x}(10\sin(x))
integral of (2sech^2(t))/(tanh(t))
\int\:\frac{2\sech^{2}(t)}{\tanh(t)}dt
sum from n=1 to infinity of n/(4(n+1)!)
\sum\:_{n=1}^{\infty\:}\frac{n}{4(n+1)!}
derivative of ln((x^2(x+1))/(sqrt(x+2)))
derivative\:\ln(\frac{x^{2}(x+1)}{\sqrt{x+2}})
integral of (5+4x)/(1+x^2)
\int\:\frac{5+4x}{1+x^{2}}dx
integral of e^{-x/8}
\int\:e^{-\frac{x}{8}}dx
x^{''}+2x^'+2=0,x(0)=0,x^'(0)=1
x^{\prime\:\prime\:}+2x^{\prime\:}+2=0,x(0)=0,x^{\prime\:}(0)=1
limit as x approaches 0 of 1/(x^3-7x)
\lim\:_{x\to\:0}(\frac{1}{x^{3}-7x})
area f(x)=2x^3+3x^2-5x,-4,3
area\:f(x)=2x^{3}+3x^{2}-5x,-4,3
(\partial)/(\partial x)(x^3ln(yz))
\frac{\partial\:}{\partial\:x}(x^{3}\ln(yz))
integral of xsqrt(x-12)
\int\:x\sqrt{x-12}dx
x(dv)/(dx)= 2/v+v
x\frac{dv}{dx}=\frac{2}{v}+v
(dy)/(dx)=2y+x(e^{3x}-e^{2x})
\frac{dy}{dx}=2y+x(e^{3x}-e^{2x})
integral from 0 to pi of pi(sin(x))^2
\int\:_{0}^{π}π(\sin(x))^{2}dx
laplacetransform e^{-t}-e^{-2t}
laplacetransform\:e^{-t}-e^{-2t}
sum from n=0 to infinity of 5(2/3)^{n-1}
\sum\:_{n=0}^{\infty\:}5(\frac{2}{3})^{n-1}
limit as x approaches 0 of xcot(3x)
\lim\:_{x\to\:0}(x\cot(3x))
integral of (3x^2+4)/(x^3+4x)
\int\:\frac{3x^{2}+4}{x^{3}+4x}dx
integral of log_{e}(x)
\int\:\log_{e}(x)dx
derivative of c_{1}e^{-4x}
\frac{d}{dx}(c_{1}e^{-4x})
y^'-0.4y=29sin(x)
y^{\prime\:}-0.4y=29\sin(x)
taylor 1/((1-x)^2),0
taylor\:\frac{1}{(1-x)^{2}},0
derivative of h(t)=-16t^2+144t
derivative\:h(t)=-16t^{2}+144t
derivative of 30e^{-0.0000323h}
derivative\:30e^{-0.0000323h}
limit as x approaches 0 of-2xsin(1/x)
\lim\:_{x\to\:0}(-2x\sin(\frac{1}{x}))
(\partial)/(\partial y)(xy^2-6x^2-3y^2)
\frac{\partial\:}{\partial\:y}(xy^{2}-6x^{2}-3y^{2})
derivative of y=(8x^3+5)^{3/2}
derivative\:y=(8x^{3}+5)^{\frac{3}{2}}
area y=e^x,y=e^{-2x},x=ln(6)
area\:y=e^{x},y=e^{-2x},x=\ln(6)
derivative of-1/(x^2-1)
\frac{d}{dx}(-\frac{1}{x^{2}}-1)
derivative of (480x)/((x^2+5)^3)
derivative\:\frac{480x}{(x^{2}+5)^{3}}
derivative of ln(sqrt(x^2-5))
\frac{d}{dx}(\ln(\sqrt{x^{2}-5}))
derivative of f(x)=(x^2-8)^2
derivative\:f(x)=(x^{2}-8)^{2}
derivative of x^2Inx
\frac{d}{dx}(x^{2}Inx)
limit as n approaches infinity of-1/n
\lim\:_{n\to\:\infty\:}(-\frac{1}{n})
integral of (3x^2+1)/(x(x-1)^3)
\int\:\frac{3x^{2}+1}{x(x-1)^{3}}dx
integral of x(x+5)^4
\int\:x(x+5)^{4}dx
integral of cos^{(3)}(5x)sin^{-2}(5x)
\int\:\cos^{(3)}(5x)\sin^{-2}(5x)dx
(\partial)/(\partial x)(e^{x^5})
\frac{\partial\:}{\partial\:x}(e^{x^{5}})
(\partial)/(\partial x)(x/((1-x)^2))
\frac{\partial\:}{\partial\:x}(\frac{x}{(1-x)^{2}})
(\partial)/(\partial y)(1/(x^3-y^2))
\frac{\partial\:}{\partial\:y}(\frac{1}{x^{3}-y^{2}})
tangent of f(x)=x^2+3,\at x=1
tangent\:f(x)=x^{2}+3,\at\:x=1
limit as x approaches-10-of (x+9)/(x+10)
\lim\:_{x\to\:-10-}(\frac{x+9}{x+10})
(\partial)/(\partial x)(2e^{-y}x)
\frac{\partial\:}{\partial\:x}(2e^{-y}x)
integral of (sin(2x))/(37+cos^2(x))
\int\:\frac{\sin(2x)}{37+\cos^{2}(x)}dx
integral of x*log_{10}(x)
\int\:x\cdot\:\log_{10}(x)dx
integral of 8y-24
\int\:8y-24dy
limit as x approaches 5+of (-1)/(x^2-25)
\lim\:_{x\to\:5+}(\frac{-1}{x^{2}-25})
integral of 9θcos(θ)
\int\:9θ\cos(θ)dθ
area x^2-3,2x
area\:x^{2}-3,2x
derivative of e^x+3xe^x
derivative\:e^{x}+3xe^{x}
limit as x approaches 0+of x^{4sin(x)}
\lim\:_{x\to\:0+}(x^{4\sin(x)})
normal of y=x^2-9x,(3,-18)
normal\:y=x^{2}-9x,(3,-18)
derivative of 4(cos(x^2-2x^2sin(x^2)))
\frac{d}{dx}(4(\cos(x^{2})-2x^{2}\sin(x^{2})))
integral of sqrt(tan^3(x))sec^4(x)
\int\:\sqrt{\tan^{3}(x)}\sec^{4}(x)dx
integral of x^{-5}
\int\:x^{-5}dx
integral of (2x+1)/(x^2+6x+10)
\int\:\frac{2x+1}{x^{2}+6x+10}dx
limit as t approaches infinity of 1/(4t)
\lim\:_{t\to\:\infty\:}(\frac{1}{4t})
derivative of f(x)=(sqrt(x))/(x+6)
derivative\:f(x)=\frac{\sqrt{x}}{x+6}
simplify ln(xy)
simplify\:\ln(xy)
(\partial)/(\partial x)(y^2-e^{xy}y)
\frac{\partial\:}{\partial\:x}(y^{2}-e^{xy}y)
integral of (x+1)^4
\int\:(x+1)^{4}dx
integral of 1/(sqrt(4x^2-49))
\int\:\frac{1}{\sqrt{4x^{2}-49}}dx
integral of 2cos(4x)
\int\:2\cos(4x)dx
limit as x approaches 2+of (2-x)/(x^2-4)
\lim\:_{x\to\:2+}(\frac{2-x}{x^{2}-4})
derivative of ln(2x+4)
\frac{d}{dx}(\ln(2x+4))
integral of ln(u)
\int\:\ln(u)du
limit as x approaches infinity of (sqrt(x^2+3))/(sqrt(3x^2+1))
\lim\:_{x\to\:\infty\:}(\frac{\sqrt{x^{2}+3}}{\sqrt{3x^{2}+1}})
integral of (2x^3+x^2-5)/(x-1)
\int\:\frac{2x^{3}+x^{2}-5}{x-1}dx
(x^2+1)y^'+5x(y-1)=0,y(0)=9
(x^{2}+1)y^{\prime\:}+5x(y-1)=0,y(0)=9
sum from n=0 to infinity of q^n
\sum\:_{n=0}^{\infty\:}q^{n}
integral of (1+8v)/(-16v^2)
\int\:\frac{1+8v}{-16v^{2}}dv
1
..
915
916
917
918
919
..
1823