You can see your coupon in the
user page
Go To QuillBot
Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
AI Chat
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
limit as x approaches 2+of 4/((x-2)^3)
\lim\:_{x\to\:2+}(\frac{4}{(x-2)^{3}})
derivative of 3x^{1/3}+2x^2
\frac{d}{dx}(3x^{\frac{1}{3}}+2x^{2})
integral of e^{3x}sin(e^x)
\int\:e^{3x}\sin(e^{x})dx
derivative of sqrt(x)+1/(\sqrt[3]{x})
\frac{d}{dx}(\sqrt{x}+\frac{1}{\sqrt[3]{x}})
limit as x approaches-infinity of 2^x
\lim\:_{x\to\:-\infty\:}(2^{x})
limit as n approaches infinity of ((-1)^{n+1})/((n+3)*n!)
\lim\:_{n\to\:\infty\:}(\frac{(-1)^{n+1}}{(n+3)\cdot\:n!})
integral of x^3sqrt(x^2-8)
\int\:x^{3}\sqrt{x^{2}-8}dx
integral of e^{3x}sin(2x)
\int\:e^{3x}\sin(2x)dx
sum from n=3 to infinity of e^{3-6n}
\sum\:_{n=3}^{\infty\:}e^{3-6n}
(\partial)/(\partial x)(e^{x+y}-1)
\frac{\partial\:}{\partial\:x}(e^{x+y}-1)
integral of (e^{-2x})/(e^x)
\int\:\frac{e^{-2x}}{e^{x}}dx
limit as x approaches-2 of (2+|x|)/(2+x)
\lim\:_{x\to\:-2}(\frac{2+\left|x\right|}{2+x})
limit as x approaches 0 of (x^4)/x
\lim\:_{x\to\:0}(\frac{x^{4}}{x})
limit as x approaches 3/7 of (|3-7x|)/(21x^2-9x)
\lim\:_{x\to\:\frac{3}{7}}(\frac{\left|3-7x\right|}{21x^{2}-9x})
area y=sin^2(x),y=sin^3(x),[0,pi]
area\:y=\sin^{2}(x),y=\sin^{3}(x),[0,π]
derivative of 1/(\sqrt[4]{x})
\frac{d}{dx}(\frac{1}{\sqrt[4]{x}})
sum from n=0 to infinity of (x+1)^n
\sum\:_{n=0}^{\infty\:}(x+1)^{n}
derivative of 2xy^4-3
\frac{d}{dx}(2xy^{4}-3)
(\partial)/(\partial x)(2x^3y+sin(x^3))
\frac{\partial\:}{\partial\:x}(2x^{3}y+\sin(x^{3}))
integral of (2x^2+3x)^3
\int\:(2x^{2}+3x)^{3}dx
derivative of y=(f(x))/(x^5)
derivative\:y=\frac{f(x)}{x^{5}}
derivative of 2tan^2(7x)
derivative\:2\tan^{2}(7x)
(2xy+3)dx+(x^2-1)dy=0
(2xy+3)dx+(x^{2}-1)dy=0
3xy^'+7y=0
3xy^{\prime\:}+7y=0
derivative of (e^{10x}+e^{-10x})/x
derivative\:\frac{e^{10x}+e^{-10x}}{x}
derivative of 2(ln(x))
\frac{d}{dx}(2(\ln(x)))
integral from 0 to 1.5 of (3/2-x)^2
\int\:_{0}^{1.5}(\frac{3}{2}-x)^{2}dx
y^{''}-8y^'+16y=t^{-8}e^{4t}
y^{\prime\:\prime\:}-8y^{\prime\:}+16y=t^{-8}e^{4t}
integral of (cos^4(x)sin(x))
\int\:(\cos^{4}(x)\sin(x))dx
integral of (x^2+1)(x^3+3x)^4
\int\:(x^{2}+1)(x^{3}+3x)^{4}dx
integral of (2x+5)/(sqrt(x^2+5x))
\int\:\frac{2x+5}{\sqrt{x^{2}+5x}}dx
derivative of f(x)=sqrt(7+\sqrt{5x)}
derivative\:f(x)=\sqrt{7+\sqrt{5x}}
y^'=k*y
y^{\prime\:}=k\cdot\:y
derivative of ((3t-1))/(sqrt(t)-2)
derivative\:\frac{(3t-1)}{\sqrt{t}-2}
tangent of y=(4x)/(x+2)
tangent\:y=\frac{4x}{x+2}
derivative of ln(4xy)
\frac{d}{dx}(\ln(4xy))
derivative of (18)/(x^4)
derivative\:\frac{18}{x^{4}}
f(x)= x/((1+x^2))
f(x)=\frac{x}{(1+x^{2})}
derivative of (x^2-3x+2)^5
derivative\:(x^{2}-3x+2)^{5}
integral of x^{12}e^{x^{13}}
\int\:x^{12}e^{x^{13}}dx
tangent of f(x)=x^2-9,(-2,-5)
tangent\:f(x)=x^{2}-9,(-2,-5)
integral of (x^3)/(x^4+5)
\int\:\frac{x^{3}}{x^{4}+5}dx
derivative of 1/(x(8+ln(x)))
\frac{d}{dx}(\frac{1}{x(8+\ln(x))})
limit as x approaches-3 of (x+2)/(x+3)
\lim\:_{x\to\:-3}(\frac{x+2}{x+3})
limit as x approaches-3 of (x-2)/(x+5)
\lim\:_{x\to\:-3}(\frac{x-2}{x+5})
derivative of x^{1/2}y^{1/2}
\frac{d}{dx}(x^{\frac{1}{2}}y^{\frac{1}{2}})
limit as x approaches 8 of x^3-6x+5
\lim\:_{x\to\:8}(x^{3}-6x+5)
tangent of 1/(x^2),\at x=3
tangent\:\frac{1}{x^{2}},\at\:x=3
(dy)/(dx)3x^3+3y^3-5xy=0
\frac{dy}{dx}3x^{3}+3y^{3}-5xy=0
integral of t/(sqrt(at^2+b))
\int\:\frac{t}{\sqrt{at^{2}+b}}dt
(d^2)/(dx^2)(3e^xcos(x))
\frac{d^{2}}{dx^{2}}(3e^{x}\cos(x))
slope of (-3,2),(6,3)
slope\:(-3,2),(6,3)
integral of 30arctan(sqrt(x))
\int\:30\arctan(\sqrt{x})dx
laplacetransform 2sin(3t)
laplacetransform\:2\sin(3t)
limit as x approaches 1 of ax+b
\lim\:_{x\to\:1}(ax+b)
integral of 1/(xe^{-x)}
\int\:\frac{1}{xe^{-x}}dx
derivative of (5x^3+3(x^4-2x))
\frac{d}{dx}((5x^{3}+3)(x^{4}-2x))
laplacetransform te^{2t}sin(t)
laplacetransform\:te^{2t}\sin(t)
(dy)/(dx)+2y=e^{-x}
\frac{dy}{dx}+2y=e^{-x}
taylor X^3-X^2+4X+5
taylor\:X^{3}-X^{2}+4X+5
tangent of f(x)=(125)/(x^2+24),\at x=-1
tangent\:f(x)=\frac{125}{x^{2}+24},\at\:x=-1
integral of 1/(2x^2-4x+20)
\int\:\frac{1}{2x^{2}-4x+20}dx
(\partial)/(\partial x)(x^2e^{yz^2})
\frac{\partial\:}{\partial\:x}(x^{2}e^{yz^{2}})
limit as x approaches-3.1 of x^2
\lim\:_{x\to\:-3.1}(x^{2})
(dy)/(dx)=(xsqrt(x^2-y^2)+y^2)/(xy)
\frac{dy}{dx}=\frac{x\sqrt{x^{2}-y^{2}}+y^{2}}{xy}
integral of sin((xy)/2)
\int\:\sin(\frac{xy}{2})dy
limit as x approaches 0 of (cos(x))/(5x)
\lim\:_{x\to\:0}(\frac{\cos(x)}{5x})
d/(dt)(3cos(2t))
\frac{d}{dt}(3\cos(2t))
integral of (x^3-(x-1)^2)/x
\int\:\frac{x^{3}-(x-1)^{2}}{x}dx
limit as x approaches 1 of 4x-1
\lim\:_{x\to\:1}(4x-1)
derivative of 100x^2-26xe^x
\frac{d}{dx}(100x^{2}-26xe^{x})
derivative of log_{10}(3x+4)
\frac{d}{dx}(\log_{10}(3x+4))
(\partial)/(\partial x)(tan(xy)+ye^{3x})
\frac{\partial\:}{\partial\:x}(\tan(xy)+ye^{3x})
y^'+y=e^{-t}sin(t)
y^{\prime\:}+y=e^{-t}\sin(t)
derivative of cos(t)
derivative\:\cos(t)
(\partial)/(\partial x)((4x^4y^2+9)^2)
\frac{\partial\:}{\partial\:x}((4x^{4}y^{2}+9)^{2})
integral of (1+e^x)/(1-e^x)
\int\:\frac{1+e^{x}}{1-e^{x}}dx
limit as h approaches 0 of ((7+h)-7)/h
\lim\:_{h\to\:0}(\frac{(7+h)-7}{h})
integral of (x+1)/(sqrt(x+1))
\int\:\frac{x+1}{\sqrt{x+1}}dx
laplacetransform t^2(8e^{2t}-6sin(t))
laplacetransform\:t^{2}(8e^{2t}-6\sin(t))
limit as x approaches 0 of (1+4x)^{4/x}
\lim\:_{x\to\:0}((1+4x)^{\frac{4}{x}})
(\partial}{\partial x}((2t)/((1-\frac{0.5(x))/L)^2))
\frac{\partial\:}{\partial\:x}(\frac{2t}{(1-\frac{0.5(x)}{L})^{2}})
derivative of 1/(csc(x+cot(x)))
\frac{d}{dx}(\frac{1}{\csc(x)+\cot(x)})
derivative of 2arcsin(x^3)
derivative\:2\arcsin(x^{3})
derivative of 10e^{-2x}
\frac{d}{dx}(10e^{-2x})
derivative of h(t)=(t+5)^{2/3}(3t^2-5)^3
derivative\:h(t)=(t+5)^{\frac{2}{3}}(3t^{2}-5)^{3}
limit as x approaches 9 of 5/((x-9))
\lim\:_{x\to\:9}(\frac{5}{(x-9)})
7yy^'=x
7yy^{\prime\:}=x
limit as x approaches (a+1) of x^2-1
\lim\:_{x\to\:(a+1)}(x^{2}-1)
derivative of 3/2 x
\frac{d}{dx}(\frac{3}{2}x)
laplacetransform cos(3t-1)
laplacetransform\:\cos(3t-1)
y^{''}+7y^'+10y=-11te^{2t}
y^{\prime\:\prime\:}+7y^{\prime\:}+10y=-11te^{2t}
integral of (4x+1)^3
\int\:(4x+1)^{3}dx
derivative of-sec(1/x+7x)
derivative\:-\sec(\frac{1}{x}+7x)
(\partial)/(\partial x)(7e^{xy})
\frac{\partial\:}{\partial\:x}(7e^{xy})
derivative of \sqrt[3]{x}tan(5x)
\frac{d}{dx}(\sqrt[3]{x}\tan(5x))
derivative of (sqrt(x)/(ln(x)))
\frac{d}{dx}(\frac{\sqrt{x}}{\ln(x)})
integral of (\sqrt[3]{x^4})
\int\:(\sqrt[3]{x^{4}})dx
4t((dy)/(dt))-y=sqrt(t)
4t(\frac{dy}{dt})-y=\sqrt{t}
integral of 1/(sqrt(144+x^2))
\int\:\frac{1}{\sqrt{144+x^{2}}}dx
1
..
979
980
981
982
983
..
1823