You can see your coupon in the
user page
Go To QuillBot
Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
AI Chat
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
derivative of sin(3x)+cos(4x)
derivative\:\sin(3x)+\cos(4x)
integral from 0 to 1 of 1/(x^{0.5)}
\int\:_{0}^{1}\frac{1}{x^{0.5}}dx
(\partial)/(\partial x)((3x+1)y)
\frac{\partial\:}{\partial\:x}((3x+1)y)
integral of ((x^2+1))/((x-4)(x-3)^2)
\int\:\frac{(x^{2}+1)}{(x-4)(x-3)^{2}}dx
y^{''}-10y^'+34y=0,y(0)=-2,y^'(0)=-3
y^{\prime\:\prime\:}-10y^{\prime\:}+34y=0,y(0)=-2,y^{\prime\:}(0)=-3
area 3/x , 3/(x^2),6
area\:\frac{3}{x},\frac{3}{x^{2}},6
area y=5,y=x^2+1
area\:y=5,y=x^{2}+1
simplify (x-2)^2sqrt(-3x)
simplify\:(x-2)^{2}\sqrt{-3x}
integral from-2 to 0 of \sqrt[3]{x^2}
\int\:_{-2}^{0}\sqrt[3]{x^{2}}dx
derivative of x^2sqrt(3-x)
\frac{d}{dx}(x^{2}\sqrt{3-x})
integral of 1/(5+x^2)
\int\:\frac{1}{5+x^{2}}dx
integral of (ln(y))/(log_{10)(y)}
\int\:\frac{\ln(y)}{\log_{10}(y)}dy
tangent of f(x)=x^4-17x^2+16
tangent\:f(x)=x^{4}-17x^{2}+16
integral of pi((sin(x))/x)^2
\int\:π(\frac{\sin(x)}{x})^{2}dx
integral from-1 to 1 of (5x)/((x+4)^2)
\int\:_{-1}^{1}\frac{5x}{(x+4)^{2}}dx
area y=|x-6|,y= x/2
area\:y=\left|x-6\right|,y=\frac{x}{2}
sum from n=1 to infinity of (2n)/(5n-3)
\sum\:_{n=1}^{\infty\:}\frac{2n}{5n-3}
derivative of e^{sin(2x)}
derivative\:e^{\sin(2x)}
integral from 0 to 1 of 2(1-x)
\int\:_{0}^{1}2(1-x)dx
integral of (4x)/(sqrt(4x^2+1))
\int\:\frac{4x}{\sqrt{4x^{2}+1}}dx
derivative of (2x/((x^2-3)^2))
\frac{d}{dx}(\frac{2x}{(x^{2}-3)^{2}})
derivative of y=e^{-x}cos(2x)
derivative\:y=e^{-x}\cos(2x)
inverse oflaplace 1/(s^4+s^2)
inverselaplace\:\frac{1}{s^{4}+s^{2}}
integral of (x^2+2x)
\int\:(x^{2}+2x)dx
integral of-3tan(3y)
\int\:-3\tan(3y)dy
derivative of (x-y/(sin(x)-sin(y)))
\frac{d}{dx}(\frac{x-y}{\sin(x)-\sin(y)})
(\partial)/(\partial y)(x^2sin^2(yz))
\frac{\partial\:}{\partial\:y}(x^{2}\sin^{2}(yz))
integral of x^{n-1}
\int\:x^{n-1}dx
inverse oflaplace 1/(sqrt(s))
inverselaplace\:\frac{1}{\sqrt{s}}
integral of sec^2(θ)+6
\int\:\sec^{2}(θ)+6dθ
derivative of (x^2)/(1+x)
derivative\:\frac{x^{2}}{1+x}
d/(d{r)}(ln({r}))
\frac{d}{d{r}}(\ln({r}))
area y=\sqrt[3]{x},y= 1/x ,x=8
area\:y=\sqrt[3]{x},y=\frac{1}{x},x=8
derivative of 2(x-3)
\frac{d}{dx}(2(x-3))
tangent of f(x)=(x^2)/(x+5),\at x=3
tangent\:f(x)=\frac{x^{2}}{x+5},\at\:x=3
derivative of aq^2
derivative\:aq^{2}
area 2x-x^2,2x-4
area\:2x-x^{2},2x-4
derivative of sin(xcot(x))
\frac{d}{dx}(\sin(x)\cot(x))
limit as x approaches 0+of-(2+ln(x))/x
\lim\:_{x\to\:0+}(-\frac{2+\ln(x)}{x})
integral from 0 to 2 of pi(8-x^3)^2
\int\:_{0}^{2}π(8-x^{3})^{2}dx
limit as x approaches-2 of x^4
\lim\:_{x\to\:-2}(x^{4})
sum from n=1 to infinity of (2n+1)^{-6}
\sum\:_{n=1}^{\infty\:}(2n+1)^{-6}
derivative of 9cos(2/5 x)
derivative\:9\cos(\frac{2}{5}x)
integral of (3x)/((x^2-3)^3)
\int\:\frac{3x}{(x^{2}-3)^{3}}dx
derivative of (2x-5/(2x+5))
\frac{d}{dx}(\frac{2x-5}{2x+5})
derivative of-x^2+x/3-3
\frac{d}{dx}(-x^{2}+\frac{x}{3}-3)
integral of-5xe^{x^2}
\int\:-5xe^{x^{2}}dx
integral of cos(7x)cos(3x)
\int\:\cos(7x)\cos(3x)dx
integral of e^{-sx}x^2
\int\:e^{-sx}x^{2}dx
integral of 125x^2cos(5x)
\int\:125x^{2}\cos(5x)dx
(\partial)/(\partial u)(u^2v^3)
\frac{\partial\:}{\partial\:u}(u^{2}v^{3})
limit as x approaches 0 of x^2-8
\lim\:_{x\to\:0}(x^{2}-8)
integral of x^5sqrt(x^3+4)
\int\:x^{5}\sqrt{x^{3}+4}dx
integral of ((x+5))/(x^2+10x+26)
\int\:\frac{(x+5)}{x^{2}+10x+26}dx
integral of 1/(x^2sqrt(2x^2-32))
\int\:\frac{1}{x^{2}\sqrt{2x^{2}-32}}dx
integral of sin^4(2x)*cos(2x)
\int\:\sin^{4}(2x)\cdot\:\cos(2x)dx
derivative of y= 1/((1+c_{1)e^{-x})}
derivative\:y=\frac{1}{(1+c_{1}e^{-x})}
(\partial)/(\partial x)(e^{xt})
\frac{\partial\:}{\partial\:x}(e^{xt})
derivative of 1/(x^{1/3})
\frac{d}{dx}(\frac{1}{x^{\frac{1}{3}}})
integral of z^2sin(x)
\int\:z^{2}\sin(x)dx
y^{''''}+y=0
y^{\prime\:\prime\:\prime\:\prime\:}+y=0
(dy)/(dx)=(y^2)/(2x+3)
\frac{dy}{dx}=\frac{y^{2}}{2x+3}
integral of (x^3)/(4-x^4)
\int\:\frac{x^{3}}{4-x^{4}}dx
integral of (sec^2(x))/(3+tan^2(x))
\int\:\frac{\sec^{2}(x)}{3+\tan^{2}(x)}dx
y^{''}-4y^'+3y=t,y(0)=1,y^'(0)=0
y^{\prime\:\prime\:}-4y^{\prime\:}+3y=t,y(0)=1,y^{\prime\:}(0)=0
integral from 0 to 1 of (x-8)/(x^2-5x+6)
\int\:_{0}^{1}\frac{x-8}{x^{2}-5x+6}dx
derivative of (x^2/(ln(x)))
\frac{d}{dx}(\frac{x^{2}}{\ln(x)})
derivative of x^{3/5}sqrt(x^3+2x-6)
\frac{d}{dx}(x^{\frac{3}{5}}\sqrt{x^{3}+2x-6})
derivative of 2x^2-9x+10
\frac{d}{dx}(2x^{2}-9x+10)
inverse oflaplace (2s-44)/(7s^2-14s+70)
inverselaplace\:\frac{2s-44}{7s^{2}-14s+70}
(dx)/(dy)=((y-x))/(y+x)
\frac{dx}{dy}=\frac{(y-x)}{y+x}
area y=2,y=x^2+1
area\:y=2,y=x^{2}+1
derivative of (log_{2}(x)^4)
\frac{d}{dx}((\log_{2}(x))^{4})
y^{''}+3y^'=0,y(0)=1,y^'(0)=1
y^{\prime\:\prime\:}+3y^{\prime\:}=0,y(0)=1,y^{\prime\:}(0)=1
derivative of 3x^{3/2}
derivative\:3x^{\frac{3}{2}}
slope of (2,3),(7,-6)
slope\:(2,3),(7,-6)
integral of (\sqrt[3]{x}-1/x)^2
\int\:(\sqrt[3]{x}-\frac{1}{x})^{2}dx
tangent of f(x)= 1/(sqrt(x+1)),(0,1)
tangent\:f(x)=\frac{1}{\sqrt{x+1}},(0,1)
area y=6e^x,y=6e^{-x},x=1
area\:y=6e^{x},y=6e^{-x},x=1
integral of 1/(y^2-9)
\int\:\frac{1}{y^{2}-9}dy
derivative of y(θ)=pi^4cos(θ)
derivative\:y(θ)=π^{4}\cos(θ)
d/(dt)(sqrt(9+t))
\frac{d}{dt}(\sqrt{9+t})
derivative of x+sqrt(2)cos(x)
\frac{d}{dx}(x+\sqrt{2}\cos(x))
derivative of x^2-2x+8
derivative\:x^{2}-2x+8
integral of x^5sqrt(1+x^3)
\int\:x^{5}\sqrt{1+x^{3}}dx
tangent of x^2+4x-11=-2y^2-3y,(2,-1)
tangent\:x^{2}+4x-11=-2y^{2}-3y,(2,-1)
integral of (3-x)^{-1/2}
\int\:(3-x)^{-\frac{1}{2}}dx
derivative of x^2+x+4
\frac{d}{dx}(x^{2}+x+4)
(dh)/(dt)=4-16t^2,h(1)=0
\frac{dh}{dt}=4-16t^{2},h(1)=0
derivative of ln(x^2-16x)
\frac{d}{dx}(\ln(x^{2}-16x))
integral of (y^2-1)
\int\:(y^{2}-1)dy
area x^3-13x^2+40x,-x^3+13x^2-40x
area\:x^{3}-13x^{2}+40x,-x^{3}+13x^{2}-40x
y^'=13xy-16x
y^{\prime\:}=13xy-16x
integral of ((2x^3+x-1))/(x^3+x^2-4x-4)
\int\:\frac{(2x^{3}+x-1)}{x^{3}+x^{2}-4x-4}dx
limit as x approaches 2 of pi^2-2x+5
\lim\:_{x\to\:2}(π^{2}-2x+5)
derivative of x(2x+7)^{2/3}
derivative\:x(2x+7)^{\frac{2}{3}}
limit as t approaches 2 of sqrt(8+t^3)
\lim\:_{t\to\:2}(\sqrt{8+t^{3}})
area y=e^{-x}sin(x),y=-e^{-x}sin(x),0<= x<= pi
area\:y=e^{-x}\sin(x),y=-e^{-x}\sin(x),0\le\:x\le\:π
integral of (cos(7x))/(1+sin^2(7x))
\int\:\frac{\cos(7x)}{1+\sin^{2}(7x)}dx
(dy)/(dx)= y/(x^2+1)
\frac{dy}{dx}=\frac{y}{x^{2}+1}
1
..
980
981
982
983
984
..
1823