You can see your coupon in the
user page
Go To QuillBot
Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
×
Symbolab for Chrome
Snip & solve on any website
Add to Chrome
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
domain of-sqrt(9-x^2)
domain\:-\sqrt{9-x^{2}}
inverse of sqrt(2-x)+7
inverse\:\sqrt{2-x}+7
inverse of f(800)=50x+450
inverse\:f(800)=50x+450
domain of sqrt(4x-16)
domain\:\sqrt{4x-16}
critical f(x)=x^3-3x+4
critical\:f(x)=x^{3}-3x+4
extreme f(x)=x^4-x^5
extreme\:f(x)=x^{4}-x^{5}
inverse of (x^2-16)/(8x^2)
inverse\:\frac{x^{2}-16}{8x^{2}}
inverse of f(x)= x/(2x+1)
inverse\:f(x)=\frac{x}{2x+1}
domain of ln(1-x^2)
domain\:\ln(1-x^{2})
perpendicular x-6y=-3
perpendicular\:x-6y=-3
inverse of 5x-6
inverse\:5x-6
domain of sqrt(2x+1)
domain\:\sqrt{2x+1}
simplify (-2.4)(5)
simplify\:(-2.4)(5)
domain of y= 1/(3x-x^2)
domain\:y=\frac{1}{3x-x^{2}}
domain of sqrt((16-x^2)/(x+1))
domain\:\sqrt{\frac{16-x^{2}}{x+1}}
domain of f(x)=sqrt(17-5x)
domain\:f(x)=\sqrt{17-5x}
inverse of f(x)=((x+1))/((x+2))
inverse\:f(x)=\frac{(x+1)}{(x+2)}
range of (2x^2+2x-12)/(x^2+x)
range\:\frac{2x^{2}+2x-12}{x^{2}+x}
range of ((x+1))/(2x+1)
range\:\frac{(x+1)}{2x+1}
range of 8/(x+4)
range\:\frac{8}{x+4}
domain of f(x)=((5/x))/((5/x)+5)
domain\:f(x)=\frac{(\frac{5}{x})}{(\frac{5}{x})+5}
intercepts of f(x)=x^2-4x-12+1/(x^2)
intercepts\:f(x)=x^{2}-4x-12+\frac{1}{x^{2}}
asymptotes of ((3x))/(ln(x))
asymptotes\:\frac{(3x)}{\ln(x)}
domain of y=sqrt(2x-4)
domain\:y=\sqrt{2x-4}
critical (3x+1)/(3x)
critical\:\frac{3x+1}{3x}
inverse of f(x)=(x-1)/x
inverse\:f(x)=\frac{x-1}{x}
inverse of 1/(s^2+9)
inverse\:\frac{1}{s^{2}+9}
shift 6sin(3x-pi)
shift\:6\sin(3x-π)
domain of f(x)=-1/2
domain\:f(x)=-\frac{1}{2}
inverse of f(x)=4x+9
inverse\:f(x)=4x+9
range of f(x)=(x+20)^2-30
range\:f(x)=(x+20)^{2}-30
shift f(x)=cos(1/2 x)
shift\:f(x)=\cos(\frac{1}{2}x)
range of f(x)=x^2-6x+8
range\:f(x)=x^{2}-6x+8
inverse of (x+9)^2
inverse\:(x+9)^{2}
distance (0,0),(2,-1)
distance\:(0,0),(2,-1)
critical f(x)=x^{7/3}-x^{4/3}
critical\:f(x)=x^{\frac{7}{3}}-x^{\frac{4}{3}}
inverse of e^{ln(x)}
inverse\:e^{\ln(x)}
intercepts of f(x)=10x-9y=90
intercepts\:f(x)=10x-9y=90
inverse of f(x)=9x+3
inverse\:f(x)=9x+3
inverse of f(x)=(7-4x)/(8+3x)
inverse\:f(x)=\frac{7-4x}{8+3x}
parity f(x)=3x^3+x
parity\:f(x)=3x^{3}+x
symmetry y=3x^3
symmetry\:y=3x^{3}
domain of f(x)=((sqrt(x)))/(4x^2+3x-1)
domain\:f(x)=\frac{(\sqrt{x})}{4x^{2}+3x-1}
domain of f(x)=(7x+9)/(9x-7)*(9x)/(9x-7)
domain\:f(x)=\frac{7x+9}{9x-7}\cdot\:\frac{9x}{9x-7}
domain of 1-x^2
domain\:1-x^{2}
simplify (4.3)(-2.3)
simplify\:(4.3)(-2.3)
inflection f(x)=tan(x)
inflection\:f(x)=\tan(x)
inverse of 3x-6
inverse\:3x-6
asymptotes of x/(x^2-1)
asymptotes\:\frac{x}{x^{2}-1}
midpoint (1,8),(7,-4)
midpoint\:(1,8),(7,-4)
domain of x^4-x^2sin(x)+1
domain\:x^{4}-x^{2}\sin(x)+1
midpoint (3,-1),(-5,-5)
midpoint\:(3,-1),(-5,-5)
inverse of y=6x-3
inverse\:y=6x-3
inverse of g(x)=-2/3 x-5
inverse\:g(x)=-\frac{2}{3}x-5
domain of-x^2-8x+9
domain\:-x^{2}-8x+9
asymptotes of f(x)=xsqrt(4-x)
asymptotes\:f(x)=x\sqrt{4-x}
intercepts of f(x)=(x+1)^2-36
intercepts\:f(x)=(x+1)^{2}-36
intercepts of-2x^3+18x^2+168x-4
intercepts\:-2x^{3}+18x^{2}+168x-4
inverse of f(x)= 1/(2x+1)
inverse\:f(x)=\frac{1}{2x+1}
simplify (6.6)(2.2)
simplify\:(6.6)(2.2)
critical x^2-2x+5
critical\:x^{2}-2x+5
inverse of f(x)=ln(-x)
inverse\:f(x)=\ln(-x)
inverse of y=(1/3)^{x-3}+2
inverse\:y=(\frac{1}{3})^{x-3}+2
intercepts of y=-x^2+9
intercepts\:y=-x^{2}+9
inverse of (x-2)^2+4
inverse\:(x-2)^{2}+4
slope of 2x+y=5
slope\:2x+y=5
monotone f(x)=x(x-1)^{2/5}
monotone\:f(x)=x(x-1)^{\frac{2}{5}}
midpoint (2,-3),(9,21)
midpoint\:(2,-3),(9,21)
monotone f(x)=x^4-4x^2
monotone\:f(x)=x^{4}-4x^{2}
domain of f(x)=(4x-1)/(2x+1)
domain\:f(x)=\frac{4x-1}{2x+1}
intercepts of y=x^2+2x-15
intercepts\:y=x^{2}+2x-15
inverse of f(x)=-3(x+6)
inverse\:f(x)=-3(x+6)
critical f(x)=x^2+e^{16x}
critical\:f(x)=x^{2}+e^{16x}
slope ofintercept 3x-5y=15
slopeintercept\:3x-5y=15
range of xsqrt(4-x^2)
range\:x\sqrt{4-x^{2}}
inverse of f(x)=(16)/(5+3x)
inverse\:f(x)=\frac{16}{5+3x}
domain of f(x)=(x-3)^2
domain\:f(x)=(x-3)^{2}
inflection f(x)=-x^4-8x^3+7x+7
inflection\:f(x)=-x^{4}-8x^{3}+7x+7
domain of f(x)=sqrt(x^2+8x)
domain\:f(x)=\sqrt{x^{2}+8x}
distance (6,1),(-1,-3)
distance\:(6,1),(-1,-3)
range of (2x-3)/(x+1)
range\:\frac{2x-3}{x+1}
domain of f(x)=sqrt(x-5)
domain\:f(x)=\sqrt{x-5}
\begin{pmatrix}0&\end{pmatrix}\begin{pmatrix}4&\end{pmatrix}
line (4,-5),(-3,6)
line\:(4,-5),(-3,6)
domain of f(x)=sqrt((x^2-4)/(x-2))
domain\:f(x)=\sqrt{\frac{x^{2}-4}{x-2}}
inverse of f(x)=3+ln(x)
inverse\:f(x)=3+\ln(x)
domain of (ln(x-1))/(x-1)
domain\:\frac{\ln(x-1)}{x-1}
domain of f(x)=2+x
domain\:f(x)=2+x
inverse of f(x)=5x-8
inverse\:f(x)=5x-8
inflection f(x)=-4/((x^2+1))
inflection\:f(x)=-\frac{4}{(x^{2}+1)}
periodicity of f(x)=tan(4x+pi)
periodicity\:f(x)=\tan(4x+π)
inflection sin(3x)
inflection\:\sin(3x)
asymptotes of f(x)=1-(1+x)/x
asymptotes\:f(x)=1-\frac{1+x}{x}
intercepts of f(x)=(2x-18)/(3x^2-20x-63)
intercepts\:f(x)=\frac{2x-18}{3x^{2}-20x-63}
inverse of f(x)=((x+1))/(x-2)
inverse\:f(x)=\frac{(x+1)}{x-2}
inflection x^{1/5}(x+6)
inflection\:x^{\frac{1}{5}}(x+6)
domain of 5/(sqrt(t))
domain\:\frac{5}{\sqrt{t}}
inverse of (3x+1)/(2x-7)
inverse\:\frac{3x+1}{2x-7}
critical f(x)=x^2-4x
critical\:f(x)=x^{2}-4x
domain of f(x)=x^4+2
domain\:f(x)=x^{4}+2
1
..
171
172
173
174
175
..
839