You can see your coupon in the
user page
Go To QuillBot
Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
×
Symbolab for Chrome
Snip & solve on any website
Add to Chrome
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
domain of ((x^2+16))/(x^3+27)
domain\:\frac{(x^{2}+16)}{x^{3}+27}
asymptotes of f(x)=((x+2)(x-3))/(2x^2)
asymptotes\:f(x)=\frac{(x+2)(x-3)}{2x^{2}}
monotone (-x^2+1)/((x^2+1)^2)
monotone\:\frac{-x^{2}+1}{(x^{2}+1)^{2}}
domain of f(x)=(sqrt(x-5))/(x+1)
domain\:f(x)=\frac{\sqrt{x-5}}{x+1}
symmetry-0.1x^2+0.7x+6
symmetry\:-0.1x^{2}+0.7x+6
inflection f(x)=-3x^4+18x^2
inflection\:f(x)=-3x^{4}+18x^{2}
domain of f(t)=(56)/((t+7)^2)
domain\:f(t)=\frac{56}{(t+7)^{2}}
domain of (x+1)/(x^2-4x-12)
domain\:\frac{x+1}{x^{2}-4x-12}
domain of f(x)=ln(x^2-2x)
domain\:f(x)=\ln(x^{2}-2x)
inverse of f(x)=(3x-9)/8
inverse\:f(x)=\frac{3x-9}{8}
critical ln(x-9)
critical\:\ln(x-9)
domain of y=sqrt(x)
domain\:y=\sqrt{x}
inverse of f(x)=(3x-7)/5
inverse\:f(x)=\frac{3x-7}{5}
slope ofintercept 7x-12y=14
slopeintercept\:7x-12y=14
domain of f(x)=sqrt(x^2-64)
domain\:f(x)=\sqrt{x^{2}-64}
y=9-x^2
y=9-x^{2}
range of f(x)= x/(sqrt(3-x))
range\:f(x)=\frac{x}{\sqrt{3-x}}
inverse of 500(0.04-x^2)
inverse\:500(0.04-x^{2})
inverse of \sqrt[3]{x+13}
inverse\:\sqrt[3]{x+13}
domain of (2x^2+8x-24)/(x^2+x-12)
domain\:\frac{2x^{2}+8x-24}{x^{2}+x-12}
asymptotes of f(x)= 1/(x^2-1)
asymptotes\:f(x)=\frac{1}{x^{2}-1}
inverse of g(x)= 1/x-1
inverse\:g(x)=\frac{1}{x}-1
asymptotes of f(x)=(x^2-1)/(x^2-4)
asymptotes\:f(x)=\frac{x^{2}-1}{x^{2}-4}
amplitude of cos(2t)
amplitude\:\cos(2t)
domain of f(x)= 1/(sqrt(2x-3))
domain\:f(x)=\frac{1}{\sqrt{2x-3}}
range of sqrt(4x-x^2)
range\:\sqrt{4x-x^{2}}
midpoint (-3,-2),(2,3)
midpoint\:(-3,-2),(2,3)
domain of f(x)= 4/(3+x)
domain\:f(x)=\frac{4}{3+x}
domain of 1/(x^3+4x)
domain\:\frac{1}{x^{3}+4x}
range of y= x/(x^2+x-6)
range\:y=\frac{x}{x^{2}+x-6}
inflection f(x)=x^3-6x^2-36x
inflection\:f(x)=x^{3}-6x^{2}-36x
intercepts of f(x)=y^2-x-25=0
intercepts\:f(x)=y^{2}-x-25=0
inverse of f(x)=4x+16
inverse\:f(x)=4x+16
y=-3x-1
y=-3x-1
critical (x^2-1)/(x^3)
critical\:\frac{x^{2}-1}{x^{3}}
inflection f(x)=-2/5 x^6+5x^4
inflection\:f(x)=-\frac{2}{5}x^{6}+5x^{4}
domain of f(x)= 1/(sqrt(x^2-1))
domain\:f(x)=\frac{1}{\sqrt{x^{2}-1}}
midpoint (3,4),(11,17)
midpoint\:(3,4),(11,17)
inverse of f(x)=10x
inverse\:f(x)=10x
slope of (-2-3) 5/2
slope\:(-2-3)\frac{5}{2}
range of sqrt(81-x^2)
range\:\sqrt{81-x^{2}}
critical f(x)=25x^3-3x
critical\:f(x)=25x^{3}-3x
monotone f(x)=-3+6x-x^3
monotone\:f(x)=-3+6x-x^{3}
global 125x+1200
global\:125x+1200
inverse of y=sin(x-4)-1
inverse\:y=\sin(x-4)-1
domain of sqrt(x+11)
domain\:\sqrt{x+11}
domain of (1+sqrt(-81x^2+1))/x
domain\:\frac{1+\sqrt{-81x^{2}+1}}{x}
domain of f(x)= 6/x-x-7
domain\:f(x)=\frac{6}{x}-x-7
range of 2-3cos(2x)
range\:2-3\cos(2x)
amplitude of 6sin(3x-pi)
amplitude\:6\sin(3x-π)
asymptotes of f(x)= 1/(x^3)
asymptotes\:f(x)=\frac{1}{x^{3}}
intercepts of f(x)=-2(x-1)^2-4
intercepts\:f(x)=-2(x-1)^{2}-4
inverse of f(x)= 3/4 x+2
inverse\:f(x)=\frac{3}{4}x+2
domain of f(x)=((x-3))/(x^2-4x-12)
domain\:f(x)=\frac{(x-3)}{x^{2}-4x-12}
shift-6cos(4x-pi/2)
shift\:-6\cos(4x-\frac{π}{2})
asymptotes of f(x)=(x-5)/(25x-x^3)
asymptotes\:f(x)=\frac{x-5}{25x-x^{3}}
slope ofintercept 3x-4y=10
slopeintercept\:3x-4y=10
midpoint (-3,5),(1,-9)
midpoint\:(-3,5),(1,-9)
parallel 5x-3y=-6
parallel\:5x-3y=-6
domain of 1/(2sqrt(8-x))
domain\:\frac{1}{2\sqrt{8-x}}
parity f(x)=x^2|x|+8
parity\:f(x)=x^{2}\left|x\right|+8
inverse of f(x)=(18-x)^{1/4}
inverse\:f(x)=(18-x)^{\frac{1}{4}}
domain of f(x)= 1/3 sqrt(x)-4
domain\:f(x)=\frac{1}{3}\sqrt{x}-4
domain of f(x)=(x+2)/(x+7)
domain\:f(x)=\frac{x+2}{x+7}
inverse of f(x)=(2x-3)/(5x-1)
inverse\:f(x)=\frac{2x-3}{5x-1}
domain of f(x)= x/7
domain\:f(x)=\frac{x}{7}
inverse of f(x)=9+(5x+9)^3
inverse\:f(x)=9+(5x+9)^{3}
domain of \sqrt[3]{1+sqrt(|x|-3)}
domain\:\sqrt[3]{1+\sqrt{\left|x\right|-3}}
domain of f(x)=(2x+3)sqrt(x^2+8)
domain\:f(x)=(2x+3)\sqrt{x^{2}+8}
asymptotes of f(x)=3x+2-log_{e}(x^2-1)
asymptotes\:f(x)=3x+2-\log_{e}(x^{2}-1)
asymptotes of f(x)=(5x+7x^4)/(4-x^2)
asymptotes\:f(x)=\frac{5x+7x^{4}}{4-x^{2}}
inverse of g(x)=3^x
inverse\:g(x)=3^{x}
domain of f(x)= 1/2 (x+3)^2-2
domain\:f(x)=\frac{1}{2}(x+3)^{2}-2
slope ofintercept 3y=x+6
slopeintercept\:3y=x+6
inflection f(x)=x^3-6x^2+2
inflection\:f(x)=x^{3}-6x^{2}+2
slope of y=3+2x
slope\:y=3+2x
intercepts of f(x)=4(x+1)(x+2)^2
intercepts\:f(x)=4(x+1)(x+2)^{2}
inverse of f(x)=x^2-7
inverse\:f(x)=x^{2}-7
asymptotes of f(x)= 5/((x-1)^3)
asymptotes\:f(x)=\frac{5}{(x-1)^{3}}
monotone x^2e^x
monotone\:x^{2}e^{x}
inverse of 1/(4x-3)
inverse\:\frac{1}{4x-3}
parallel 4x-2y=1
parallel\:4x-2y=1
intercepts of f(x)=x^2+6x-2
intercepts\:f(x)=x^{2}+6x-2
extreme xsqrt(25-x^2)
extreme\:x\sqrt{25-x^{2}}
inverse of f(x)=4(x+3)^2-8
inverse\:f(x)=4(x+3)^{2}-8
domain of f(x)=ln((x^2)/(x-1))
domain\:f(x)=\ln(\frac{x^{2}}{x-1})
inverse of 1/(x+15)
inverse\:\frac{1}{x+15}
inflection f(x)=(ln(x))/x
inflection\:f(x)=\frac{\ln(x)}{x}
line (1992,61.6),(1997,64)
line\:(1992,61.6),(1997,64)
slope of-3x+2y=6
slope\:-3x+2y=6
distance (-6,6),(-3,3)
distance\:(-6,6),(-3,3)
inverse of f(x)=(4-3x)/(x-7)
inverse\:f(x)=\frac{4-3x}{x-7}
domain of 1/(sqrt(\sqrt{x^2+2x))}
domain\:\frac{1}{\sqrt{\sqrt{x^{2}+2x}}}
critical f(x)=3x(x-2)
critical\:f(x)=3x(x-2)
inverse of f(x)=6x-8
inverse\:f(x)=6x-8
asymptotes of (x^2)/(x-2)
asymptotes\:\frac{x^{2}}{x-2}
inverse of \sqrt[5]{-n+1}
inverse\:\sqrt[5]{-n+1}
parity cos(cot(x))
parity\:\cos(\cot(x))
domain of f(x)=sqrt(64-t^2)
domain\:f(x)=\sqrt{64-t^{2}}
domain of f(x)=(x-4)/(x^2+1)
domain\:f(x)=\frac{x-4}{x^{2}+1}
1
..
218
219
220
221
222
..
839