You can see your coupon in the
user page
Go To QuillBot
Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
×
Symbolab for Chrome
Snip & solve on any website
Add to Chrome
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
extreme f(x)=2x^3-3x^2-36x+5
extreme\:f(x)=2x^{3}-3x^{2}-36x+5
inverse of f(x)=x^3-3
inverse\:f(x)=x^{3}-3
slope ofintercept-2x+5y=10
slopeintercept\:-2x+5y=10
distance (2,3),(-3,15)
distance\:(2,3),(-3,15)
slope of 2x+3y=8
slope\:2x+3y=8
parity f(x)=4
parity\:f(x)=4
slope of y= 3/4 x+1
slope\:y=\frac{3}{4}x+1
asymptotes of f(x)=(x^2+2x+1)/(4x^2-x-5)
asymptotes\:f(x)=\frac{x^{2}+2x+1}{4x^{2}-x-5}
inverse of f(x)= 1/2 log_{3}(x)
inverse\:f(x)=\frac{1}{2}\log_{3}(x)
domain of 4x+12
domain\:4x+12
domain of-x
domain\:-x
inverse of 7x+5
inverse\:7x+5
inverse of 6x+2
inverse\:6x+2
inverse of f(x)=-sqrt(x-2)
inverse\:f(x)=-\sqrt{x-2}
range of-|x|-3
range\:-\left|x\right|-3
intercepts of (x^2-4x+3)/(-x+3)
intercepts\:\frac{x^{2}-4x+3}{-x+3}
domain of (\sqrt[3]{x-2})/(x^3-2)
domain\:\frac{\sqrt[3]{x-2}}{x^{3}-2}
asymptotes of f(x)=(x^2+5x)/(4x+20)
asymptotes\:f(x)=\frac{x^{2}+5x}{4x+20}
range of (3-2x)(12-x)
range\:(3-2x)(12-x)
inverse of f(x)=(x-1)/(x+2)
inverse\:f(x)=\frac{x-1}{x+2}
domain of f(x)=(1-6sqrt(x))/x
domain\:f(x)=\frac{1-6\sqrt{x}}{x}
inflection f(x)=x^{2/3}-3
inflection\:f(x)=x^{\frac{2}{3}}-3
inverse of 7x+2
inverse\:7x+2
domain of f(10)= 1/(sqrt(x-1))
domain\:f(10)=\frac{1}{\sqrt{x-1}}
inverse of f(x)=sqrt(5x+15)
inverse\:f(x)=\sqrt{5x+15}
domain of f(x)=sqrt(t-16)
domain\:f(x)=\sqrt{t-16}
symmetry 5x^2-4y^2=2
symmetry\:5x^{2}-4y^{2}=2
midpoint (-3,-4),(-5,-3)
midpoint\:(-3,-4),(-5,-3)
critical f(x)=-x^2+4x-4
critical\:f(x)=-x^{2}+4x-4
extreme f(x)=-x^4+8x^2+6
extreme\:f(x)=-x^{4}+8x^{2}+6
domain of f(x)= 1/(sqrt(2-3x))
domain\:f(x)=\frac{1}{\sqrt{2-3x}}
inverse of f(x)=(2x-1)/(4x+6)
inverse\:f(x)=\frac{2x-1}{4x+6}
domain of f(x)=sqrt(36-t^2)
domain\:f(x)=\sqrt{36-t^{2}}
perpendicular y=x,(-1,3)
perpendicular\:y=x,(-1,3)
inverse of f(x)=-2/3 x-10/3
inverse\:f(x)=-\frac{2}{3}x-\frac{10}{3}
inverse of f(x)=100000-2500x
inverse\:f(x)=100000-2500x
range of f(x)= 1/2 (x-3)^2+4
range\:f(x)=\frac{1}{2}(x-3)^{2}+4
domain of 2x^2+24x+76
domain\:2x^{2}+24x+76
inverse of f(x)=5-1/5 x
inverse\:f(x)=5-\frac{1}{5}x
domain of f(x)=(3+x)/(sqrt(x+2))
domain\:f(x)=\frac{3+x}{\sqrt{x+2}}
distance (x,-4),(-4,-1)
distance\:(x,-4),(-4,-1)
domain of f(x)=sqrt(\sqrt{x^2-16)-3}
domain\:f(x)=\sqrt{\sqrt{x^{2}-16}-3}
inverse of f(x)=(2x-3)/5
inverse\:f(x)=\frac{2x-3}{5}
domain of f(x)=(x^2+2)/(x-1)
domain\:f(x)=\frac{x^{2}+2}{x-1}
inverse of f(x)=-2(x-1)^2+27=9+y
inverse\:f(x)=-2(x-1)^{2}+27=9+y
monotone f(x)=-2^{x+1}
monotone\:f(x)=-2^{x+1}
range of (cos(8θ)-cos(4θ))/2
range\:\frac{\cos(8θ)-\cos(4θ)}{2}
shift 2-3cos(2x)
shift\:2-3\cos(2x)
asymptotes of log_{5}(x)
asymptotes\:\log_{5}(x)
intercepts of f(x)=-2x+7
intercepts\:f(x)=-2x+7
asymptotes of f(x)=2e^{-0.7t}
asymptotes\:f(x)=2e^{-0.7t}
asymptotes of f(x)=(81x^2-18)/(3x-2)
asymptotes\:f(x)=\frac{81x^{2}-18}{3x-2}
inverse of f(x)=(10)/x
inverse\:f(x)=\frac{10}{x}
domain of f(x)=-3(x-5)^2+4
domain\:f(x)=-3(x-5)^{2}+4
line (0,10),(1,0)
line\:(0,10),(1,0)
domain of f(x)=(x-1)^2
domain\:f(x)=(x-1)^{2}
asymptotes of f(x)=(-2x^2+3x)/(x-1)
asymptotes\:f(x)=\frac{-2x^{2}+3x}{x-1}
domain of f(x)=(2x+1)/(x-3)
domain\:f(x)=\frac{2x+1}{x-3}
domain of f(x)=-sqrt(2z+3)
domain\:f(x)=-\sqrt{2z+3}
domain of f(x)=(x^2+4x-3)/(x^4-5x^2+4)
domain\:f(x)=\frac{x^{2}+4x-3}{x^{4}-5x^{2}+4}
domain of f(x)=(9x)/(x^2-1)
domain\:f(x)=\frac{9x}{x^{2}-1}
range of (13-x)^{1/6}
range\:(13-x)^{\frac{1}{6}}
line (1,4),(3,6)
line\:(1,4),(3,6)
domain of f(x)=x-4
domain\:f(x)=x-4
inverse of (2x+3)/(x-1)
inverse\:\frac{2x+3}{x-1}
inverse of sqrt(x-6)
inverse\:\sqrt{x-6}
inverse of y= 1/3 x-1
inverse\:y=\frac{1}{3}x-1
intercepts of f(x)=x^4-8x^3-16x+5
intercepts\:f(x)=x^{4}-8x^{3}-16x+5
domain of (4t^2-7)/(9t+27)
domain\:\frac{4t^{2}-7}{9t+27}
extreme f(x)=-x^2-6x-3
extreme\:f(x)=-x^{2}-6x-3
asymptotes of (1-4x)/(1+7x)
asymptotes\:\frac{1-4x}{1+7x}
simplify (-3.2)(5.5)
simplify\:(-3.2)(5.5)
critical f(x)=4x^2-e^x
critical\:f(x)=4x^{2}-e^{x}
simplify (1.7)(9)
simplify\:(1.7)(9)
midpoint (8,13),(6,-1)
midpoint\:(8,13),(6,-1)
domain of h(x)=sqrt(x-9)
domain\:h(x)=\sqrt{x-9}
critical f(x)=5x^4-10x^2+8
critical\:f(x)=5x^{4}-10x^{2}+8
domain of f(x)=x^2-7x-30
domain\:f(x)=x^{2}-7x-30
parity f(x)=tan(e^t)+e^{tan(t)}
parity\:f(x)=\tan(e^{t})+e^{\tan(t)}
parallel 7x-12y=-32
parallel\:7x-12y=-32
domain of 2/(x+1)*x/(x+1)
domain\:\frac{2}{x+1}\cdot\:\frac{x}{x+1}
inverse of f(x)= 5/11 x+10
inverse\:f(x)=\frac{5}{11}x+10
domain of sqrt(x^2+5x+6)
domain\:\sqrt{x^{2}+5x+6}
intercepts of 4x^2-4x+21
intercepts\:4x^{2}-4x+21
range of \sqrt[3]{x+7}
range\:\sqrt[3]{x+7}
line (-2,3),(2,1)
line\:(-2,3),(2,1)
extreme f(x)=x^4-4x^3+1
extreme\:f(x)=x^{4}-4x^{3}+1
inverse of f(x)= 1/64 x^3
inverse\:f(x)=\frac{1}{64}x^{3}
inflection x^3+2x+4
inflection\:x^{3}+2x+4
domain of f(x)=sin(e^x-1)
domain\:f(x)=\sin(e^{x}-1)
intercepts of f(x)=8log_{6}(6x+8)+24
intercepts\:f(x)=8\log_{6}(6x+8)+24
range of 1/(x+5)
range\:\frac{1}{x+5}
range of (x-4)/(x+2)
range\:\frac{x-4}{x+2}
inverse of f(x)=(x+6)^2
inverse\:f(x)=(x+6)^{2}
inverse of f(x)=log_{2}(x)-1
inverse\:f(x)=\log_{2}(x)-1
domain of f(x)= 4/(\sqrt[3]{1+x)}
domain\:f(x)=\frac{4}{\sqrt[3]{1+x}}
frequency f(x)=cos(2x)
frequency\:f(x)=\cos(2x)
domain of \sqrt[3]{x+4}
domain\:\sqrt[3]{x+4}
range of ln((x+1)/2)
range\:\ln(\frac{x+1}{2})
inflection (x^3)/3-x^2-15x
inflection\:\frac{x^{3}}{3}-x^{2}-15x
1
..
259
260
261
262
263
..
839