You can see your coupon in the
user page
Go To QuillBot
Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
×
Symbolab for Chrome
Snip & solve on any website
Add to Chrome
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
range of y=8^x-4
range\:y=8^{x}-4
inverse of f(x)=4x^2+16x-3
inverse\:f(x)=4x^{2}+16x-3
asymptotes of f(x)=(2x)/(x^2-9)
asymptotes\:f(x)=\frac{2x}{x^{2}-9}
asymptotes of y=(x^2-x)/(x^2-5x+4)
asymptotes\:y=\frac{x^{2}-x}{x^{2}-5x+4}
domain of y=f(x)=ln(2x+1)-sqrt(2x-1)
domain\:y=f(x)=\ln(2x+1)-\sqrt{2x-1}
domain of sqrt(-x-2)
domain\:\sqrt{-x-2}
domain of (\sqrt[3]{x})/(x^2+3)
domain\:\frac{\sqrt[3]{x}}{x^{2}+3}
domain of f(x)=2x-2
domain\:f(x)=2x-2
domain of f(x)= x/(x^2+4x+3)
domain\:f(x)=\frac{x}{x^{2}+4x+3}
f(g(2)),g(x)=2x+1,f(x)=x^2
f(g(2)),g(x)=2x+1,f(x)=x^{2}
slope ofintercept y+12=-3(x-4)
slopeintercept\:y+12=-3(x-4)
domain of f(x)=sqrt(2x-8)
domain\:f(x)=\sqrt{2x-8}
amplitude of-2sin(x+pi/2)
amplitude\:-2\sin(x+\frac{π}{2})
inverse of 2x-3
inverse\:2x-3
critical x^3-3x^2+2
critical\:x^{3}-3x^{2}+2
range of (x+1)/(1+1/(x+1))
range\:\frac{x+1}{1+\frac{1}{x+1}}
extreme f(x)=x^3-2x+1
extreme\:f(x)=x^{3}-2x+1
domain of f(x)= 1/2 (3)^{x+4}-5
domain\:f(x)=\frac{1}{2}(3)^{x+4}-5
asymptotes of f(x)=(x^2-2x-3)/(x-2)
asymptotes\:f(x)=\frac{x^{2}-2x-3}{x-2}
domain of f(x)=(6+x)/(1-6x)
domain\:f(x)=\frac{6+x}{1-6x}
intercepts of f(x)=2x-5
intercepts\:f(x)=2x-5
intercepts of f(x)=1-3x-x^2
intercepts\:f(x)=1-3x-x^{2}
symmetry y=x^2-6x-7
symmetry\:y=x^{2}-6x-7
domain of (x+7)/(x^2-16)
domain\:\frac{x+7}{x^{2}-16}
midpoint (-9,-7),(-3,1)
midpoint\:(-9,-7),(-3,1)
domain of sqrt(3x+6)
domain\:\sqrt{3x+6}
range of 3x^2-4
range\:3x^{2}-4
asymptotes of f(x)=-1
asymptotes\:f(x)=-1
domain of f(x)=2x^2+3
domain\:f(x)=2x^{2}+3
parity y=x^{cos(x)}
parity\:y=x^{\cos(x)}
inverse of f(x)=(1-2x)/(5x-1)
inverse\:f(x)=\frac{1-2x}{5x-1}
extreme f(x)=5x^3+4x^4
extreme\:f(x)=5x^{3}+4x^{4}
asymptotes of f(x)=7cot(pi/2 x)
asymptotes\:f(x)=7\cot(\frac{π}{2}x)
midpoint (8.2,2.3),(-0.5,1.6)
midpoint\:(8.2,2.3),(-0.5,1.6)
amplitude of 5cos(4x)
amplitude\:5\cos(4x)
inverse of y=1-2x
inverse\:y=1-2x
critical f(x)=8xe^{9x}
critical\:f(x)=8xe^{9x}
domain of y=sqrt(2x-10)
domain\:y=\sqrt{2x-10}
distance (-6,-3),(-1,9)
distance\:(-6,-3),(-1,9)
extreme f(x)=x-(27x)/(x+3)
extreme\:f(x)=x-\frac{27x}{x+3}
slope of-7x-2y=-8
slope\:-7x-2y=-8
inverse of f(x)=(-5x+5)/(3x+1)
inverse\:f(x)=\frac{-5x+5}{3x+1}
critical (x-4)(x/2+1)^3
critical\:(x-4)(\frac{x}{2}+1)^{3}
inverse of f(x)= 1/2 x^3
inverse\:f(x)=\frac{1}{2}x^{3}
inverse of 1-cos(x)
inverse\:1-\cos(x)
asymptotes of f(x)=(2x+1)/(x-3)
asymptotes\:f(x)=\frac{2x+1}{x-3}
domain of f(x)=sqrt(1/(x^2)-5)
domain\:f(x)=\sqrt{\frac{1}{x^{2}}-5}
inverse of f(x)=-5/4 x+10
inverse\:f(x)=-\frac{5}{4}x+10
amplitude of 5sin(1/4 x)
amplitude\:5\sin(\frac{1}{4}x)
inverse of g(x)=g(x)=-2/3 x-5
inverse\:g(x)=g(x)=-\frac{2}{3}x-5
domain of f(x)=(x^2-2x-3)/x
domain\:f(x)=\frac{x^{2}-2x-3}{x}
parity f(x)=3-x^2
parity\:f(x)=3-x^{2}
perpendicular m= 5/8
perpendicular\:m=\frac{5}{8}
slope ofintercept x-2y=-10
slopeintercept\:x-2y=-10
domain of f(x)= x/(6-2x)
domain\:f(x)=\frac{x}{6-2x}
inflection f(x)=3x^3-4x
inflection\:f(x)=3x^{3}-4x
extreme f(x)=12x^3-24x^2
extreme\:f(x)=12x^{3}-24x^{2}
inverse of g(x)= x/(x-1)
inverse\:g(x)=\frac{x}{x-1}
asymptotes of (x^2+4x-5)/(x^2-25)
asymptotes\:\frac{x^{2}+4x-5}{x^{2}-25}
domain of f(x)=(x^2-5)/(x-5)
domain\:f(x)=\frac{x^{2}-5}{x-5}
extreme g(x)=x^3-9x^2+15x+2
extreme\:g(x)=x^{3}-9x^{2}+15x+2
asymptotes of (-2x-8)/(5x+20)
asymptotes\:\frac{-2x-8}{5x+20}
domain of x^3-5x
domain\:x^{3}-5x
perpendicular 8x-2y=9
perpendicular\:8x-2y=9
parallel y=6x-4(-8.5)
parallel\:y=6x-4(-8.5)
inverse of f(x)=((3x+10))/(4-5x)
inverse\:f(x)=\frac{(3x+10)}{4-5x}
inverse of 6x^3+7
inverse\:6x^{3}+7
asymptotes of f(x)=((-6x+11))/((2x+1))
asymptotes\:f(x)=\frac{(-6x+11)}{(2x+1)}
domain of sqrt(\sqrt{x-1)-2}
domain\:\sqrt{\sqrt{x-1}-2}
inverse of f(x)=((x-7)^7)/7
inverse\:f(x)=\frac{(x-7)^{7}}{7}
monotone (x^2-1)/x
monotone\:\frac{x^{2}-1}{x}
intercepts of f(x)=-(x-3)^2+2
intercepts\:f(x)=-(x-3)^{2}+2
critical f(x)=xsqrt(100-x^2)
critical\:f(x)=x\sqrt{100-x^{2}}
asymptotes of f(x)=(x^2+5x-24)/(x+8)
asymptotes\:f(x)=\frac{x^{2}+5x-24}{x+8}
intercepts of (x^2-2x+1)/(x^3-3x^2)
intercepts\:\frac{x^{2}-2x+1}{x^{3}-3x^{2}}
domain of f(x)=-sqrt(-x)
domain\:f(x)=-\sqrt{-x}
inverse of log_{10}(32/10)
inverse\:\log_{10}(\frac{32}{10})
intercepts of y= 1/2 x-8
intercepts\:y=\frac{1}{2}x-8
inverse of y=3x^2+x+2
inverse\:y=3x^{2}+x+2
inflection f(x)=-2xe^{-3x}
inflection\:f(x)=-2xe^{-3x}
range of f(x)=3x^2-6
range\:f(x)=3x^{2}-6
perpendicular 3x+6y=5,\at
perpendicular\:3x+6y=5,\at
line (2,3),(1,0)
line\:(2,3),(1,0)
asymptotes of f(x)=(x^2-1)/(x+2)
asymptotes\:f(x)=\frac{x^{2}-1}{x+2}
intercepts of f(x)=sqrt(4+3x-x^2)
intercepts\:f(x)=\sqrt{4+3x-x^{2}}
inverse of f(x)=((3x+1))/(2x-4)
inverse\:f(x)=\frac{(3x+1)}{2x-4}
line (-3,-5),(5,-1)
line\:(-3,-5),(5,-1)
critical f(x)=3x^4-10x^3-12x^2+10x+9
critical\:f(x)=3x^{4}-10x^{3}-12x^{2}+10x+9
periodicity of f(x)=4cos(1/3 pix-pi)-3
periodicity\:f(x)=4\cos(\frac{1}{3}πx-π)-3
perpendicular 6x+4y=3
perpendicular\:6x+4y=3
monotone f(x)=2x^3+24x^2+72x
monotone\:f(x)=2x^{3}+24x^{2}+72x
parity f(x)=sqrt(x-4)
parity\:f(x)=\sqrt{x-4}
inverse of f(x)=(2x)/7-14
inverse\:f(x)=\frac{2x}{7}-14
line (-2,1),(0,5)
line\:(-2,1),(0,5)
y=x^2-7x+12
y=x^{2}-7x+12
domain of f(x)=-3x^3+9x^2+12x
domain\:f(x)=-3x^{3}+9x^{2}+12x
inverse of f(x)=-5/(x+1)
inverse\:f(x)=-\frac{5}{x+1}
domain of x^2-5x+1
domain\:x^{2}-5x+1
symmetry-x^2+4x
symmetry\:-x^{2}+4x
midpoint (11,-8),(18,-5)
midpoint\:(11,-8),(18,-5)
1
..
280
281
282
283
284
..
839