Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(θ)sec(θ)=tan^2(θ)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(θ)sec(θ)=tan2(θ)

Solution

θ=πn,θ=4π​+πn
+1
Degrees
θ=0∘+180∘n,θ=45∘+180∘n
Solution steps
sin(θ)sec(θ)=tan2(θ)
Subtract tan2(θ) from both sidessin(θ)sec(θ)−tan2(θ)=0
Rewrite using trig identities
−tan2(θ)+sec(θ)sin(θ)
sec(θ)sin(θ)=tan(θ)
sec(θ)sin(θ)
Express with sin, cos
sec(θ)sin(θ)
Use the basic trigonometric identity: sec(θ)=cos(θ)1​=cos(θ)1​sin(θ)
Simplify cos(θ)1​sin(θ):cos(θ)sin(θ)​
cos(θ)1​sin(θ)
Multiply fractions: a⋅cb​=ca⋅b​=cos(θ)1sin(θ)​
Multiply: 1⋅sin(θ)=sin(θ)=cos(θ)sin(θ)​
=cos(θ)sin(θ)​
=cos(θ)sin(θ)​
Use the basic trigonometric identity: cos(θ)sin(θ)​=tan(θ)=tan(θ)
=−tan2(θ)+tan(θ)
tan(θ)−tan2(θ)=0
Solve by substitution
tan(θ)−tan2(θ)=0
Let: tan(θ)=uu−u2=0
u−u2=0:u=0,u=1
u−u2=0
Write in the standard form ax2+bx+c=0−u2+u=0
Solve with the quadratic formula
−u2+u=0
Quadratic Equation Formula:
For a=−1,b=1,c=0u1,2​=2(−1)−1±12−4(−1)⋅0​​
u1,2​=2(−1)−1±12−4(−1)⋅0​​
12−4(−1)⋅0​=1
12−4(−1)⋅0​
Apply rule 1a=112=1=1−4(−1)⋅0​
Apply rule −(−a)=a=1+4⋅1⋅0​
Apply rule 0⋅a=0=1+0​
Add the numbers: 1+0=1=1​
Apply rule 1​=1=1
u1,2​=2(−1)−1±1​
Separate the solutionsu1​=2(−1)−1+1​,u2​=2(−1)−1−1​
u=2(−1)−1+1​:0
2(−1)−1+1​
Remove parentheses: (−a)=−a=−2⋅1−1+1​
Add/Subtract the numbers: −1+1=0=−2⋅10​
Multiply the numbers: 2⋅1=2=−20​
Apply the fraction rule: −ba​=−ba​=−20​
Apply rule a0​=0,a=0=−0
=0
u=2(−1)−1−1​:1
2(−1)−1−1​
Remove parentheses: (−a)=−a=−2⋅1−1−1​
Subtract the numbers: −1−1=−2=−2⋅1−2​
Multiply the numbers: 2⋅1=2=−2−2​
Apply the fraction rule: −b−a​=ba​=22​
Apply rule aa​=1=1
The solutions to the quadratic equation are:u=0,u=1
Substitute back u=tan(θ)tan(θ)=0,tan(θ)=1
tan(θ)=0,tan(θ)=1
tan(θ)=0:θ=πn
tan(θ)=0
General solutions for tan(θ)=0
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
θ=0+πn
θ=0+πn
Solve θ=0+πn:θ=πn
θ=0+πn
0+πn=πnθ=πn
θ=πn
tan(θ)=1:θ=4π​+πn
tan(θ)=1
General solutions for tan(θ)=1
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
θ=4π​+πn
θ=4π​+πn
Combine all the solutionsθ=πn,θ=4π​+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(3x)-2sin(x)=0sin(x+pi/2)-sin(x-pi/2)=sqrt(3)4sin^2(θ)=2sinh(x)= 33/562sin(x)=sqrt(cos(2x)+2)

Frequently Asked Questions (FAQ)

  • What is the general solution for sin(θ)sec(θ)=tan^2(θ) ?

    The general solution for sin(θ)sec(θ)=tan^2(θ) is θ=pin,θ= pi/4+pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024