Lösungen
Integrale RechnerAbleitung RechnerAlgebra RechnerMatrix RechnerMehr...
Grafiken
LiniendiagrammExponentieller GraphQuadratischer GraphSinusdiagrammMehr...
Rechner
BMI-RechnerZinseszins-RechnerProzentrechnerBeschleunigungsrechnerMehr...
Geometrie
Satz des Pythagoras-RechnerKreis Fläche RechnerGleichschenkliges Dreieck RechnerDreiecke RechnerMehr...
AI Chat
Werkzeuge
NotizbuchGruppenSpickzettelArbeitsblätterÜbungenÜberprüfe
de
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Beliebt Trigonometrie >

sin(2x)=sin(3x)

  • Voralgebra
  • Algebra
  • Vorkalkül
  • Rechnen
  • Funktionen
  • Lineare Algebra
  • Trigonometrie
  • Statistik
  • Chemie
  • Ökonomie
  • Umrechnungen

Lösung

sin(2x)=sin(3x)

Lösung

x=5π​+54πn​,x=53π​+54πn​,x=4πn,x=2π+4πn
+1
Grad
x=36∘+144∘n,x=108∘+144∘n,x=0∘+720∘n,x=360∘+720∘n
Schritte zur Lösung
sin(2x)=sin(3x)
Subtrahiere sin(3x) von beiden Seitensin(2x)−sin(3x)=0
Umschreiben mit Hilfe von Trigonometrie-Identitäten
sin(2x)−sin(3x)
Benutze die Identität von Summe und Produkt: sin(s)−sin(t)=2sin(2s−t​)cos(2s+t​)=2sin(22x−3x​)cos(22x+3x​)
Vereinfache 2sin(22x−3x​)cos(22x+3x​):−2cos(25x​)sin(2x​)
2sin(22x−3x​)cos(22x+3x​)
22x−3x​=−2x​
22x−3x​
Addiere gleiche Elemente: 2x−3x=−x=2−x​
Wende Bruchregel an: b−a​=−ba​=−2x​
=2sin(−2x​)cos(22x+3x​)
Verwende die negative Winkelidentität: sin(−x)=−sin(x)=2cos(22x+3x​)(−sin(2x​))
Entferne die Klammern: (−a)=−a=−2cos(22x+3x​)sin(2x​)
Addiere gleiche Elemente: 2x+3x=5x=−2cos(25x​)sin(2x​)
=−2cos(25x​)sin(2x​)
−2cos(25x​)sin(2x​)=0
Löse jeden Teil einzelncos(25x​)=0orsin(2x​)=0
cos(25x​)=0:x=5π​+54πn​,x=53π​+54πn​
cos(25x​)=0
Allgemeine Lösung für cos(25x​)=0
cos(x) Periodizitätstabelle mit 2πn Zyklus:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
25x​=2π​+2πn,25x​=23π​+2πn
25x​=2π​+2πn,25x​=23π​+2πn
Löse 25x​=2π​+2πn:x=5π​+54πn​
25x​=2π​+2πn
Multipliziere beide Seiten mit 2
25x​=2π​+2πn
Multipliziere beide Seiten mit 222⋅5x​=2⋅2π​+2⋅2πn
Vereinfache
22⋅5x​=2⋅2π​+2⋅2πn
Vereinfache 22⋅5x​:5x
22⋅5x​
Multipliziere die Zahlen: 2⋅5=10=210x​
Teile die Zahlen: 210​=5=5x
Vereinfache 2⋅2π​+2⋅2πn:π+4πn
2⋅2π​+2⋅2πn
2⋅2π​=π
2⋅2π​
Multipliziere Brüche: a⋅cb​=ca⋅b​=2π2​
Streiche die gemeinsamen Faktoren: 2=π
2⋅2πn=4πn
2⋅2πn
Multipliziere die Zahlen: 2⋅2=4=4πn
=π+4πn
5x=π+4πn
5x=π+4πn
5x=π+4πn
Teile beide Seiten durch 5
5x=π+4πn
Teile beide Seiten durch 555x​=5π​+54πn​
Vereinfachex=5π​+54πn​
x=5π​+54πn​
Löse 25x​=23π​+2πn:x=53π​+54πn​
25x​=23π​+2πn
Multipliziere beide Seiten mit 2
25x​=23π​+2πn
Multipliziere beide Seiten mit 222⋅5x​=2⋅23π​+2⋅2πn
Vereinfache
22⋅5x​=2⋅23π​+2⋅2πn
Vereinfache 22⋅5x​:5x
22⋅5x​
Multipliziere die Zahlen: 2⋅5=10=210x​
Teile die Zahlen: 210​=5=5x
Vereinfache 2⋅23π​+2⋅2πn:3π+4πn
2⋅23π​+2⋅2πn
2⋅23π​=3π
2⋅23π​
Multipliziere Brüche: a⋅cb​=ca⋅b​=23π2​
Streiche die gemeinsamen Faktoren: 2=3π
2⋅2πn=4πn
2⋅2πn
Multipliziere die Zahlen: 2⋅2=4=4πn
=3π+4πn
5x=3π+4πn
5x=3π+4πn
5x=3π+4πn
Teile beide Seiten durch 5
5x=3π+4πn
Teile beide Seiten durch 555x​=53π​+54πn​
Vereinfachex=53π​+54πn​
x=53π​+54πn​
x=5π​+54πn​,x=53π​+54πn​
sin(2x​)=0:x=4πn,x=2π+4πn
sin(2x​)=0
Allgemeine Lösung für sin(2x​)=0
sin(x) Periodizitätstabelle mit 2πn Zyklus:
2x​=0+2πn,2x​=π+2πn
2x​=0+2πn,2x​=π+2πn
Löse 2x​=0+2πn:x=4πn
2x​=0+2πn
0+2πn=2πn2x​=2πn
Multipliziere beide Seiten mit 2
2x​=2πn
Multipliziere beide Seiten mit 222x​=2⋅2πn
Vereinfachex=4πn
x=4πn
Löse 2x​=π+2πn:x=2π+4πn
2x​=π+2πn
Multipliziere beide Seiten mit 2
2x​=π+2πn
Multipliziere beide Seiten mit 222x​=2π+2⋅2πn
Vereinfachex=2π+4πn
x=2π+4πn
x=4πn,x=2π+4πn
Kombiniere alle Lösungenx=5π​+54πn​,x=53π​+54πn​,x=4πn,x=2π+4πn

Graph

Sorry, your browser does not support this application
Interaktives Diagramm anzeigen

Beliebte Beispiele

8sin(θ)-1=6sin(θ)8sin(θ)−1=6sin(θ)tan(x)= 50/42tan(x)=4250​0.2=cos(2pit)0.2=cos(2πt)4cos^2(2x)-1=1,0<= x<= 2pi4cos2(2x)−1=1,0≤x≤2πsec(β/4)csc(β/4)=2csc(β/4)sec(4β​)csc(4β​)=2csc(4β​)
LernwerkzeugeKI-Mathe-LöserAI ChatArbeitsblätterÜbungenSpickzettelRechnerGrafikrechnerGeometrie-RechnerLösung überprüfen
AppsSymbolab App (Android)Grafikrechner (Android)Übungen (Android)Symbolab App (iOS)Grafikrechner (iOS)Übungen (iOS)Chrome-Erweiterung
UnternehmenÜber SymbolabBlogHilfe
LegalDatenschutzbestimmungenService TermsCookiesCookie-EinstellungenVerkaufen oder teilen Sie meine persönlichen Daten nichtUrheberrecht, Community-Richtlinien, DSA und andere rechtliche RessourcenLearneo Rechtszentrum
Soziale Medien
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024