Lösungen
Integrale RechnerAbleitung RechnerAlgebra RechnerMatrix RechnerMehr...
Grafiken
LiniendiagrammExponentieller GraphQuadratischer GraphSinusdiagrammMehr...
Rechner
BMI-RechnerZinseszins-RechnerProzentrechnerBeschleunigungsrechnerMehr...
Geometrie
Satz des Pythagoras-RechnerKreis Fläche RechnerGleichschenkliges Dreieck RechnerDreiecke RechnerMehr...
AI Chat
Werkzeuge
NotizbuchGruppenSpickzettelArbeitsblätterÜbungenÜberprüfe
de
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Beliebt Trigonometrie >

tan^2(p)=tan(p)

  • Voralgebra
  • Algebra
  • Vorkalkül
  • Rechnen
  • Funktionen
  • Lineare Algebra
  • Trigonometrie
  • Statistik
  • Chemie
  • Ökonomie
  • Umrechnungen

Lösung

tan2(p)=tan(p)

Lösung

p=4π​+πn,p=πn
+1
Grad
p=45∘+180∘n,p=0∘+180∘n
Schritte zur Lösung
tan2(p)=tan(p)
Löse mit Substitution
tan2(p)=tan(p)
Angenommen: tan(p)=uu2=u
u2=u:u=1,u=0
u2=u
Verschiebe uauf die linke Seite
u2=u
Subtrahiere u von beiden Seitenu2−u=u−u
Vereinfacheu2−u=0
u2−u=0
Löse mit der quadratischen Formel
u2−u=0
Quadratische Formel für Gliechungen:
Für a=1,b=−1,c=0u1,2​=2⋅1−(−1)±(−1)2−4⋅1⋅0​​
u1,2​=2⋅1−(−1)±(−1)2−4⋅1⋅0​​
(−1)2−4⋅1⋅0​=1
(−1)2−4⋅1⋅0​
(−1)2=1
(−1)2
Wende Exponentenregel an: (−a)n=an,wenn n gerade ist(−1)2=12=12
Wende Regel an 1a=1=1
4⋅1⋅0=0
4⋅1⋅0
Wende Regel an 0⋅a=0=0
=1−0​
Subtrahiere die Zahlen: 1−0=1=1​
Wende Regel an 1​=1=1
u1,2​=2⋅1−(−1)±1​
Trenne die Lösungenu1​=2⋅1−(−1)+1​,u2​=2⋅1−(−1)−1​
u=2⋅1−(−1)+1​:1
2⋅1−(−1)+1​
Wende Regel an −(−a)=a=2⋅11+1​
Addiere die Zahlen: 1+1=2=2⋅12​
Multipliziere die Zahlen: 2⋅1=2=22​
Wende Regel an aa​=1=1
u=2⋅1−(−1)−1​:0
2⋅1−(−1)−1​
Wende Regel an −(−a)=a=2⋅11−1​
Subtrahiere die Zahlen: 1−1=0=2⋅10​
Multipliziere die Zahlen: 2⋅1=2=20​
Wende Regel an a0​=0,a=0=0
Die Lösungen für die quadratische Gleichung sind: u=1,u=0
Setze in u=tan(p)eintan(p)=1,tan(p)=0
tan(p)=1,tan(p)=0
tan(p)=1:p=4π​+πn
tan(p)=1
Allgemeine Lösung für tan(p)=1
tan(x) Periodizitätstabelle mit πn Zyklus:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
p=4π​+πn
p=4π​+πn
tan(p)=0:p=πn
tan(p)=0
Allgemeine Lösung für tan(p)=0
tan(x) Periodizitätstabelle mit πn Zyklus:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
p=0+πn
p=0+πn
Löse p=0+πn:p=πn
p=0+πn
0+πn=πnp=πn
p=πn
Kombiniere alle Lösungenp=4π​+πn,p=πn

Graph

Sorry, your browser does not support this application
Interaktives Diagramm anzeigen

Beliebte Beispiele

sin(x)+cos(x)= 2/3sin(x)+cos(x)=32​2cos^2(2θ)=1-cos(2θ)2cos2(2θ)=1−cos(2θ)1+tan^2(x)=01+tan2(x)=0sin(x)= 3/8sin(x)=83​solvefor x,tan(x)+cot(x)= 1/fsolveforx,tan(x)+cot(x)=f1​
LernwerkzeugeKI-Mathe-LöserAI ChatArbeitsblätterÜbungenSpickzettelRechnerGrafikrechnerGeometrie-RechnerLösung überprüfen
AppsSymbolab App (Android)Grafikrechner (Android)Übungen (Android)Symbolab App (iOS)Grafikrechner (iOS)Übungen (iOS)Chrome-Erweiterung
UnternehmenÜber SymbolabBlogHilfe
LegalDatenschutzbestimmungenService TermsCookiesCookie-EinstellungenVerkaufen oder teilen Sie meine persönlichen Daten nichtUrheberrecht, Community-Richtlinien, DSA und andere rechtliche RessourcenLearneo Rechtszentrum
Soziale Medien
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024