Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(3θ+72)=cos(48),0<= θ<= 360

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(3θ+72∘)=cos(48∘),0∘≤θ≤360∘

Solution

θ=22∘,θ=110∘,θ=142∘,θ=230∘,θ=262∘,θ=350∘
+1
Radians
θ=9011π​,θ=1811π​,θ=9071π​,θ=1823π​,θ=90131π​,θ=1835π​
Solution steps
sin(3θ+72∘)=cos(48∘),0∘≤θ≤360∘
Rewrite using trig identities
cos(48∘)
Use the following identity: cos(x)=sin(90∘−x)sin(90∘−48∘)
sin(3θ+72∘)=sin(90∘−48∘)
Apply trig inverse properties
sin(3θ+72∘)=sin(90∘−48∘)
sin(x)=sin(y)⇒x=y+2πn,x=π−y+2πn3θ+72∘=90∘−48∘+360∘n,3θ+72∘=180∘−(90∘−48∘)+360∘n
3θ+72∘=90∘−48∘+360∘n,3θ+72∘=180∘−(90∘−48∘)+360∘n
3θ+72∘=90∘−48∘+360∘n:θ=182160∘n−180∘​
3θ+72∘=90∘−48∘+360∘n
Move 72∘to the right side
3θ+72∘=90∘−48∘+360∘n
Subtract 72∘ from both sides3θ+72∘−72∘=90∘−48∘+360∘n−72∘
Simplify
3θ+72∘−72∘=90∘−48∘+360∘n−72∘
Simplify 3θ+72∘−72∘:3θ
3θ+72∘−72∘
Add similar elements: 72∘−72∘=0
=3θ
Simplify 90∘−48∘+360∘n−72∘:360∘n−30∘
90∘−48∘+360∘n−72∘
Group like terms=360∘n+90∘−72∘−48∘
Least Common Multiplier of 2,5,15:30
2,5,15
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 5:5
5
5 is a prime number, therefore no factorization is possible=5
Prime factorization of 15:3⋅5
15
15divides by 315=5⋅3=3⋅5
3,5 are all prime numbers, therefore no further factorization is possible=3⋅5
Compute a number comprised of factors that appear in at least one of the following:
2,5,15
=2⋅5⋅3
Multiply the numbers: 2⋅5⋅3=30=30
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 30
For 90∘:multiply the denominator and numerator by 1590∘=2⋅15180∘15​=90∘
For 72∘:multiply the denominator and numerator by 672∘=5⋅6360∘6​=72∘
For 48∘:multiply the denominator and numerator by 248∘=15⋅2720∘2​=48∘
=90∘−72∘−48∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=30180∘15−2160∘−1440∘​
Add similar elements: 2700∘−2160∘−1440∘=−900∘=30−900∘​
Apply the fraction rule: b−a​=−ba​=−30∘
Cancel the common factor: 5=360∘n−30∘
3θ=360∘n−30∘
3θ=360∘n−30∘
3θ=360∘n−30∘
Divide both sides by 3
3θ=360∘n−30∘
Divide both sides by 333θ​=3360∘n​−330∘​
Simplify
33θ​=3360∘n​−330∘​
Simplify 33θ​:θ
33θ​
Divide the numbers: 33​=1=θ
Simplify 3360∘n​−330∘​:182160∘n−180∘​
3360∘n​−330∘​
Apply rule ca​±cb​=ca±b​=3360∘n−30∘​
Join 360∘n−30∘:62160∘n−180∘​
360∘n−30∘
Convert element to fraction: 360∘n=6360∘n6​=6360∘n⋅6​−30∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=6360∘n⋅6−180∘​
Multiply the numbers: 2⋅6=12=62160∘n−180∘​
=362160∘n−180∘​​
Apply the fraction rule: acb​​=c⋅ab​=6⋅32160∘n−180∘​
Multiply the numbers: 6⋅3=18=182160∘n−180∘​
θ=182160∘n−180∘​
θ=182160∘n−180∘​
θ=182160∘n−180∘​
3θ+72∘=180∘−(90∘−48∘)+360∘n:θ=901980∘+10800∘n​
3θ+72∘=180∘−(90∘−48∘)+360∘n
Move 72∘to the right side
3θ+72∘=180∘−(90∘−48∘)+360∘n
Subtract 72∘ from both sides3θ+72∘−72∘=180∘−(90∘−48∘)+360∘n−72∘
Simplify
3θ+72∘−72∘=180∘−(90∘−48∘)+360∘n−72∘
Simplify 3θ+72∘−72∘:3θ
3θ+72∘−72∘
Add similar elements: 72∘−72∘=0
=3θ
Simplify 180∘−(90∘−48∘)+360∘n−72∘:180∘+360∘n−114∘
180∘−(90∘−48∘)+360∘n−72∘
Join 90∘−48∘:42∘
90∘−48∘
Least Common Multiplier of 2,15:30
2,15
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 15:3⋅5
15
15divides by 315=5⋅3=3⋅5
3,5 are all prime numbers, therefore no further factorization is possible=3⋅5
Multiply each factor the greatest number of times it occurs in either 2 or 15=2⋅3⋅5
Multiply the numbers: 2⋅3⋅5=30=30
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 30
For 90∘:multiply the denominator and numerator by 1590∘=2⋅15180∘15​=90∘
For 48∘:multiply the denominator and numerator by 248∘=15⋅2720∘2​=48∘
=90∘−48∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=30180∘15−1440∘​
Add similar elements: 2700∘−1440∘=1260∘=42∘
=180∘−42∘+360∘n−72∘
Group like terms=180∘+360∘n−72∘−42∘
Least Common Multiplier of 5,30:30
5,30
Least Common Multiplier (LCM)
Prime factorization of 5:5
5
5 is a prime number, therefore no factorization is possible=5
Prime factorization of 30:2⋅3⋅5
30
30divides by 230=15⋅2=2⋅15
15divides by 315=5⋅3=2⋅3⋅5
2,3,5 are all prime numbers, therefore no further factorization is possible=2⋅3⋅5
Multiply each factor the greatest number of times it occurs in either 5 or 30=5⋅2⋅3
Multiply the numbers: 5⋅2⋅3=30=30
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 30
For 72∘:multiply the denominator and numerator by 672∘=5⋅6360∘6​=72∘
=−72∘−42∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=30−2160∘−1260∘​
Add similar elements: −2160∘−1260∘=−3420∘=30−3420∘​
Apply the fraction rule: b−a​=−ba​=180∘+360∘n−114∘
3θ=180∘+360∘n−114∘
3θ=180∘+360∘n−114∘
3θ=180∘+360∘n−114∘
Divide both sides by 3
3θ=180∘+360∘n−114∘
Divide both sides by 333θ​=60∘+3360∘n​−3114∘​
Simplify
33θ​=60∘+3360∘n​−3114∘​
Simplify 33θ​:θ
33θ​
Divide the numbers: 33​=1=θ
Simplify 60∘+3360∘n​−3114∘​:901980∘+10800∘n​
60∘+3360∘n​−3114∘​
Apply rule ca​±cb​=ca±b​=3180∘+360∘n−114∘​
Join 180∘+360∘n−114∘:301980∘+10800∘n​
180∘+360∘n−114∘
Convert element to fraction: 180∘=180∘,360∘n=30360∘n30​=180∘+30360∘n⋅30​−114∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=30180∘30+360∘n⋅30−3420∘​
180∘30+360∘n⋅30−3420∘=1980∘+10800∘n
180∘30+360∘n⋅30−3420∘
Add similar elements: 5400∘−3420∘=1980∘=1980∘+2⋅5400∘n
Multiply the numbers: 2⋅30=60=1980∘+10800∘n
=301980∘+10800∘n​
=3301980∘+10800∘n​​
Apply the fraction rule: acb​​=c⋅ab​=30⋅31980∘+10800∘n​
Multiply the numbers: 30⋅3=90=901980∘+10800∘n​
θ=901980∘+10800∘n​
θ=901980∘+10800∘n​
θ=901980∘+10800∘n​
θ=182160∘n−180∘​,θ=901980∘+10800∘n​
Solutions for the range 0≤θ≤360∘θ=22∘,θ=110∘,θ=142∘,θ=230∘,θ=262∘,θ=350∘

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cot^2(y)+csc(y)-5=02cos(θ)=1,0<= θ<2picos^2(x)-tan(x)cos^2(x)=0sqrt(3)tan(x)-1=0,0<= x<= 2pi6+12sin(θ)=0

Frequently Asked Questions (FAQ)

  • What is the general solution for sin(3θ+72)=cos(48),0<= θ<= 360 ?

    The general solution for sin(3θ+72)=cos(48),0<= θ<= 360 is θ=22,θ=110,θ=142,θ=230,θ=262,θ=350
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024