Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

solvefor g,θ(t)=-1cos(sqrt(g/l)t)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

solve for g,θ(t)=−1cos(lg​​t)

Solution

g=t2larccos2(−θt)​+t24πlnarccos(−θt)​+t24π2ln2​,g=t2larccos2(−θt)​−t24πlnarccos(−θt)​+t24π2ln2​
Solution steps
θ(t)=−1⋅cos(lg​​t)
Switch sides−1⋅cos(lg​​t)=θt
Divide both sides by −1
−1⋅cos(lg​​t)=θt
Divide both sides by −1−1−1⋅cos(lg​​t)​=−1θt​
Simplifycos(lg​​t)=−θt
cos(lg​​t)=−θt
Apply trig inverse properties
cos(lg​​t)=−θt
General solutions for cos(lg​​t)=−θtcos(x)=a⇒x=arccos(a)+2πn,x=−arccos(a)+2πnlg​​t=arccos(−θt)+2πn,lg​​t=−arccos(−θt)+2πn
lg​​t=arccos(−θt)+2πn,lg​​t=−arccos(−θt)+2πn
Solve lg​​t=arccos(−θt)+2πn:g=t2larccos2(−θt)​+t24πlnarccos(−θt)​+t24π2ln2​
lg​​t=arccos(−θt)+2πn
Divide both sides by t
lg​​t=arccos(−θt)+2πn
Divide both sides by ttlg​​t​=tarccos(−θt)​+t2πn​
Simplifylg​​=tarccos(−θt)​+t2πn​
lg​​=tarccos(−θt)​+t2πn​
Square both sides:lg​=t2arccos2(−θt)​+t24πnarccos(−θt)​+t24π2n2​
lg​​=tarccos(−θt)​+t2πn​
(lg​​)2=(tarccos(−θt)​+t2πn​)2
Expand (lg​​)2:lg​
(lg​​)2
Apply radical rule: a​=a21​=((lg​)21​)2
Apply exponent rule: (ab)c=abc=(lg​)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=lg​
Expand (tarccos(−θt)​+t2πn​)2:t2arccos2(−θt)​+t24πnarccos(−θt)​+t24π2n2​
(tarccos(−θt)​+t2πn​)2
Combine the fractions tarccos(−θt)​+t2πn​:tarccos(−θt)+2πn​
Apply rule ca​±cb​=ca±b​=tarccos(−θt)+2πn​
=(tarccos(−θt)+2πn​)2
Apply exponent rule: (ba​)c=bcac​=t2(arccos(−θt)+2πn)2​
(arccos(−θt)+2πn)2=arccos2(−θt)+4πnarccos(−θt)+4π2n2
(arccos(−θt)+2πn)2
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=arccos(−θt),b=2πn
=arccos2(−θt)+2arccos(−θt)⋅2πn+(2πn)2
Simplify arccos2(−θt)+2arccos(−θt)⋅2πn+(2πn)2:arccos2(−θt)+4πnarccos(−θt)+4π2n2
arccos2(−θt)+2arccos(−θt)⋅2πn+(2πn)2
2arccos(−θt)⋅2πn=4πnarccos(−θt)
2arccos(−θt)⋅2πn
Multiply the numbers: 2⋅2=4=4πnarccos(−θt)
(2πn)2=4π2n2
(2πn)2
Apply exponent rule: (a⋅b)n=anbn=22π2n2
22=4=4π2n2
=arccos2(−θt)+4πnarccos(−θt)+4π2n2
=arccos2(−θt)+4πnarccos(−θt)+4π2n2
=t2arccos2(−θt)+4πnarccos(−θt)+4π2n2​
Apply the fraction rule: ca±b​=ca​±cb​t2arccos2(−θt)+4πnarccos(−θt)+4π2n2​=t2arccos2(−θt)​+t24πnarccos(−θt)​+t24π2n2​=t2arccos2(−θt)​+t24πnarccos(−θt)​+t24π2n2​
lg​=t2arccos2(−θt)​+t24πnarccos(−θt)​+t24π2n2​
lg​=t2arccos2(−θt)​+t24πnarccos(−θt)​+t24π2n2​
Solve lg​=t2arccos2(−θt)​+t24πnarccos(−θt)​+t24π2n2​:g=t2larccos2(−θt)​+t24πlnarccos(−θt)​+t24π2ln2​
lg​=t2arccos2(−θt)​+t24πnarccos(−θt)​+t24π2n2​
Multiply both sides by l
lg​=t2arccos2(−θt)​+t24πnarccos(−θt)​+t24π2n2​
Multiply both sides by llgl​=t2arccos2(−θt)​l+t24πnarccos(−θt)​l+t24π2n2​l
Simplify
lgl​=t2arccos2(−θt)​l+t24πnarccos(−θt)​l+t24π2n2​l
Simplify lgl​:g
lgl​
Cancel the common factor: l=g
Simplify t2arccos2(−θt)​l+t24πnarccos(−θt)​l+t24π2n2​l:t2larccos2(−θt)​+t24πlnarccos(−θt)​+t24π2ln2​
t2arccos2(−θt)​l+t24πnarccos(−θt)​l+t24π2n2​l
Multiply t2arccos2(−θt)​l:t2larccos2(−θt)​
t2arccos2(−θt)​l
Multiply fractions: a⋅cb​=ca⋅b​=t2arccos2(−θt)l​
=t2larccos2(−θt)​+lt24πnarccos(−θt)​+lt24π2n2​
Multiply t24πnarccos(−θt)​l:t24πlnarccos(−θt)​
t24πnarccos(−θt)​l
Multiply fractions: a⋅cb​=ca⋅b​=t24πnarccos(−θt)l​
=t2larccos2(−θt)​+t24πlnarccos(−θt)​+lt24π2n2​
Multiply t24π2n2​l:t24π2ln2​
t24π2n2​l
Multiply fractions: a⋅cb​=ca⋅b​=t24π2n2l​
=t2larccos2(−θt)​+t24πlnarccos(−θt)​+t24π2ln2​
g=t2larccos2(−θt)​+t24πlnarccos(−θt)​+t24π2ln2​
g=t2larccos2(−θt)​+t24πlnarccos(−θt)​+t24π2ln2​
g=t2larccos2(−θt)​+t24πlnarccos(−θt)​+t24π2ln2​
g=t2larccos2(−θt)​+t24πlnarccos(−θt)​+t24π2ln2​
Solve lg​​t=−arccos(−θt)+2πn:g=t2larccos2(−θt)​−t24πlnarccos(−θt)​+t24π2ln2​
lg​​t=−arccos(−θt)+2πn
Divide both sides by t
lg​​t=−arccos(−θt)+2πn
Divide both sides by ttlg​​t​=−tarccos(−θt)​+t2πn​
Simplifylg​​=−tarccos(−θt)​+t2πn​
lg​​=−tarccos(−θt)​+t2πn​
Square both sides:lg​=t2arccos2(−θt)​−t24πnarccos(−θt)​+t24π2n2​
lg​​=−tarccos(−θt)​+t2πn​
(lg​​)2=(−tarccos(−θt)​+t2πn​)2
Expand (lg​​)2:lg​
(lg​​)2
Apply radical rule: a​=a21​=((lg​)21​)2
Apply exponent rule: (ab)c=abc=(lg​)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=lg​
Expand (−tarccos(−θt)​+t2πn​)2:t2arccos2(−θt)​−t24πnarccos(−θt)​+t24π2n2​
(−tarccos(−θt)​+t2πn​)2
Combine the fractions −tarccos(−θt)​+t2πn​:t−arccos(−θt)+2πn​
Apply rule ca​±cb​=ca±b​=t−arccos(−θt)+2πn​
=(t−arccos(−θt)+2πn​)2
Apply exponent rule: (ba​)c=bcac​=t2(−arccos(−θt)+2πn)2​
(−arccos(−θt)+2πn)2=arccos2(−θt)−4πnarccos(−θt)+4π2n2
(−arccos(−θt)+2πn)2
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=−arccos(−θt),b=2πn
=(−arccos(−θt))2+2(−arccos(−θt))⋅2πn+(2πn)2
Simplify (−arccos(−θt))2+2(−arccos(−θt))⋅2πn+(2πn)2:arccos2(−θt)−4πnarccos(−θt)+4π2n2
(−arccos(−θt))2+2(−arccos(−θt))⋅2πn+(2πn)2
Remove parentheses: (−a)=−a=(−arccos(−θt))2−2arccos(−θt)⋅2πn+(2πn)2
(−arccos(−θt))2=arccos2(−θt)
(−arccos(−θt))2
Apply exponent rule: (−a)n=an,if n is even(−arccos(−θt))2=arccos2(−θt)=arccos2(−θt)
2arccos(−θt)⋅2πn=4πnarccos(−θt)
2arccos(−θt)⋅2πn
Multiply the numbers: 2⋅2=4=4πnarccos(−θt)
(2πn)2=4π2n2
(2πn)2
Apply exponent rule: (a⋅b)n=anbn=22π2n2
22=4=4π2n2
=arccos2(−θt)−4πnarccos(−θt)+4π2n2
=arccos2(−θt)−4πnarccos(−θt)+4π2n2
=t2arccos2(−θt)−4πnarccos(−θt)+4π2n2​
Apply the fraction rule: ca±b​=ca​±cb​t2arccos2(−θt)−4πnarccos(−θt)+4π2n2​=t2arccos2(−θt)​−t24πnarccos(−θt)​+t24π2n2​=t2arccos2(−θt)​−t24πnarccos(−θt)​+t24π2n2​
lg​=t2arccos2(−θt)​−t24πnarccos(−θt)​+t24π2n2​
lg​=t2arccos2(−θt)​−t24πnarccos(−θt)​+t24π2n2​
Solve lg​=t2arccos2(−θt)​−t24πnarccos(−θt)​+t24π2n2​:g=t2larccos2(−θt)​−t24πlnarccos(−θt)​+t24π2ln2​
lg​=t2arccos2(−θt)​−t24πnarccos(−θt)​+t24π2n2​
Multiply both sides by l
lg​=t2arccos2(−θt)​−t24πnarccos(−θt)​+t24π2n2​
Multiply both sides by llgl​=t2arccos2(−θt)​l−t24πnarccos(−θt)​l+t24π2n2​l
Simplify
lgl​=t2arccos2(−θt)​l−t24πnarccos(−θt)​l+t24π2n2​l
Simplify lgl​:g
lgl​
Cancel the common factor: l=g
Simplify t2arccos2(−θt)​l−t24πnarccos(−θt)​l+t24π2n2​l:t2larccos2(−θt)​−t24πlnarccos(−θt)​+t24π2ln2​
t2arccos2(−θt)​l−t24πnarccos(−θt)​l+t24π2n2​l
Multiply t2arccos2(−θt)​l:t2larccos2(−θt)​
t2arccos2(−θt)​l
Multiply fractions: a⋅cb​=ca⋅b​=t2arccos2(−θt)l​
=t2larccos2(−θt)​−lt24πnarccos(−θt)​+lt24π2n2​
Multiply t24πnarccos(−θt)​l:t24πlnarccos(−θt)​
t24πnarccos(−θt)​l
Multiply fractions: a⋅cb​=ca⋅b​=t24πnarccos(−θt)l​
=t2larccos2(−θt)​−t24πlnarccos(−θt)​+lt24π2n2​
Multiply t24π2n2​l:t24π2ln2​
t24π2n2​l
Multiply fractions: a⋅cb​=ca⋅b​=t24π2n2l​
=t2larccos2(−θt)​−t24πlnarccos(−θt)​+t24π2ln2​
g=t2larccos2(−θt)​−t24πlnarccos(−θt)​+t24π2ln2​
g=t2larccos2(−θt)​−t24πlnarccos(−θt)​+t24π2ln2​
g=t2larccos2(−θt)​−t24πlnarccos(−θt)​+t24π2ln2​
g=t2larccos2(−θt)​−t24πlnarccos(−θt)​+t24π2ln2​
g=t2larccos2(−θt)​+t24πlnarccos(−θt)​+t24π2ln2​,g=t2larccos2(−θt)​−t24πlnarccos(−θt)​+t24π2ln2​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sec(x)=-32tan(x)csc(x)+2csc(x)+tan(x)+1=0csc(x)+cot(x)=sqrt(3),0<= x<= 2pi(tan^2(x)-4)(2cos(x)+1)=0cos(a)= 1/4

Frequently Asked Questions (FAQ)

  • What is the general solution for solvefor g,θ(t)=-1cos(sqrt(g/l)t) ?

    The general solution for solvefor g,θ(t)=-1cos(sqrt(g/l)t) is
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024