Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sinh^2(x)+3tanh^2(x)=4

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sinh2(x)+3tanh2(x)=4

Solution

x=21​ln(5.0E165.05103E15​),x=21​ln(5.0E144.94949E15​)
+1
Degrees
x=−65.67332…∘,x=65.67332…∘
Solution steps
sinh2(x)+3tanh2(x)=4
Rewrite using trig identities
sinh2(x)+3tanh2(x)=4
Use the Hyperbolic identity: sinh(x)=2ex−e−x​(2ex−e−x​)2+3tanh2(x)=4
Use the Hyperbolic identity: tanh(x)=ex+e−xex−e−x​(2ex−e−x​)2+3(ex+e−xex−e−x​)2=4
(2ex−e−x​)2+3(ex+e−xex−e−x​)2=4
(2ex−e−x​)2+3(ex+e−xex−e−x​)2=4:x=21​ln(5.0E165.05103E15​),x=21​ln(5.0E144.94949E15​)
(2ex−e−x​)2+3(ex+e−xex−e−x​)2=4
Apply exponent rules
(2ex−e−x​)2+3(ex+e−xex−e−x​)2=4
Apply exponent rule: abc=(ab)ce−x=(ex)−1(2ex−(ex)−1​)2+3(ex+(ex)−1ex−(ex)−1​)2=4
(2ex−(ex)−1​)2+3(ex+(ex)−1ex−(ex)−1​)2=4
Rewrite the equation with ex=u(2u−(u)−1​)2+3(u+(u)−1u−(u)−1​)2=4
Solve (2u−u−1​)2+3(u+u−1u−u−1​)2=4:u=5.0E165.05103E15​​,u=−5.0E165.05103E15​​,u=5.0E144.94949E15​​,u=−5.0E144.94949E15​​
(2u−u−1​)2+3(u+u−1u−u−1​)2=4
Refine4u2(u2−1)2​+(u2+1)23(u2−1)2​=4
Multiply by LCM
4u2(u2−1)2​+(u2+1)23(u2−1)2​=4
Find Least Common Multiplier of 4u2,(u2+1)2:4u2(u2+1)2
4u2,(u2+1)2
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in 4u2 or (u2+1)2=4u2(u2+1)2
Multiply by LCM=4u2(u2+1)24u2(u2−1)2​⋅4u2(u2+1)2+(u2+1)23(u2−1)2​⋅4u2(u2+1)2=4⋅4u2(u2+1)2
Simplify
4u2(u2−1)2​⋅4u2(u2+1)2+(u2+1)23(u2−1)2​⋅4u2(u2+1)2=4⋅4u2(u2+1)2
Simplify 4u2(u2−1)2​⋅4u2(u2+1)2:(u2−1)2(u2+1)2
4u2(u2−1)2​⋅4u2(u2+1)2
Multiply fractions: a⋅cb​=ca⋅b​=4u2(u2−1)2⋅4u2(u2+1)2​
Cancel the common factor: 4=u2(u2−1)2u2(u2+1)2​
Cancel the common factor: u2=(u2−1)2(u2+1)2
Simplify (u2+1)23(u2−1)2​⋅4u2(u2+1)2:12u2(u2−1)2
(u2+1)23(u2−1)2​⋅4u2(u2+1)2
Multiply fractions: a⋅cb​=ca⋅b​=(u2+1)23(u2−1)2⋅4u2(u2+1)2​
Cancel the common factor: (u2+1)2=3(u2−1)2⋅4u2
Multiply the numbers: 3⋅4=12=12u2(u2−1)2
Simplify 4⋅4u2(u2+1)2:16u2(u2+1)2
4⋅4u2(u2+1)2
Multiply the numbers: 4⋅4=16=16u2(u2+1)2
(u2−1)2(u2+1)2+12u2(u2−1)2=16u2(u2+1)2
(u2−1)2(u2+1)2+12u2(u2−1)2=16u2(u2+1)2
(u2−1)2(u2+1)2+12u2(u2−1)2=16u2(u2+1)2
Solve (u2−1)2(u2+1)2+12u2(u2−1)2=16u2(u2+1)2:u=5.0E165.05103E15​​,u=−5.0E165.05103E15​​,u=5.0E144.94949E15​​,u=−5.0E144.94949E15​​
(u2−1)2(u2+1)2+12u2(u2−1)2=16u2(u2+1)2
Expand (u2−1)2(u2+1)2+12u2(u2−1)2:u8+12u6−26u4+12u2+1
(u2−1)2(u2+1)2+12u2(u2−1)2
(u2−1)2(u2+1)2=(u4−2u2+1)(u4+2u2+1)
(u2−1)2(u2+1)2
(u2−1)2=u4−2u2+1
(u2−1)2
Apply Perfect Square Formula: (a−b)2=a2−2ab+b2a=u2,b=1
=(u2)2−2u2⋅1+12
Simplify (u2)2−2u2⋅1+12:u4−2u2+1
(u2)2−2u2⋅1+12
Apply rule 1a=112=1=(u2)2−2⋅1⋅u2+1
(u2)2=u4
(u2)2
Apply exponent rule: (ab)c=abc=u2⋅2
Multiply the numbers: 2⋅2=4=u4
2u2⋅1=2u2
2u2⋅1
Multiply the numbers: 2⋅1=2=2u2
=u4−2u2+1
=u4−2u2+1
=(u4−2u2+1)(u2+1)2
(u2+1)2=u4+2u2+1
(u2+1)2
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=u2,b=1
=(u2)2+2u2⋅1+12
Simplify (u2)2+2u2⋅1+12:u4+2u2+1
(u2)2+2u2⋅1+12
Apply rule 1a=112=1=(u2)2+2⋅1⋅u2+1
(u2)2=u4
(u2)2
Apply exponent rule: (ab)c=abc=u2⋅2
Multiply the numbers: 2⋅2=4=u4
2u2⋅1=2u2
2u2⋅1
Multiply the numbers: 2⋅1=2=2u2
=u4+2u2+1
=u4+2u2+1
=(u4−2u2+1)(u4+2u2+1)
12u2(u2−1)2=12u2(u4−2u2+1)
12u2(u2−1)2
(u2−1)2=u4−2u2+1
(u2−1)2
Apply Perfect Square Formula: (a−b)2=a2−2ab+b2a=u2,b=1
=(u2)2−2u2⋅1+12
Simplify (u2)2−2u2⋅1+12:u4−2u2+1
(u2)2−2u2⋅1+12
Apply rule 1a=112=1=(u2)2−2⋅1⋅u2+1
(u2)2=u4
(u2)2
Apply exponent rule: (ab)c=abc=u2⋅2
Multiply the numbers: 2⋅2=4=u4
2u2⋅1=2u2
2u2⋅1
Multiply the numbers: 2⋅1=2=2u2
=u4−2u2+1
=u4−2u2+1
=12u2(u4−2u2+1)
=(u4−2u2+1)(u4+2u2+1)+12u2(u4−2u2+1)
Expand (u4−2u2+1)(u4+2u2+1):u8−2u4+1
(u4−2u2+1)(u4+2u2+1)
Distribute parentheses=u4u4+u4⋅2u2+u4⋅1+(−2u2)u4+(−2u2)⋅2u2+(−2u2)⋅1+1⋅u4+1⋅2u2+1⋅1
Apply minus-plus rules+(−a)=−a=u4u4+2u4u2+1⋅u4−2u4u2−2⋅2u2u2−2⋅1⋅u2+1⋅u4+1⋅2u2+1⋅1
Simplify u4u4+2u4u2+1⋅u4−2u4u2−2⋅2u2u2−2⋅1⋅u2+1⋅u4+1⋅2u2+1⋅1:u8−2u4+1
u4u4+2u4u2+1⋅u4−2u4u2−2⋅2u2u2−2⋅1⋅u2+1⋅u4+1⋅2u2+1⋅1
Group like terms=u4u4+2u4u2+1⋅u4−2u4u2+1⋅u4−2⋅2u2u2−2⋅1⋅u2+1⋅2u2+1⋅1
Add similar elements: 2u4u2−2u4u2=0=u4u4+1⋅u4+1⋅u4−2⋅2u2u2−2⋅1⋅u2+1⋅2u2+1⋅1
Add similar elements: 1⋅u4+1⋅u4=2u4=u4u4+2u4−2⋅2u2u2−2⋅1⋅u2+1⋅2u2+1⋅1
Add similar elements: −2⋅1⋅u2+1⋅2u2=0=u4u4+2u4−2⋅2u2u2+1⋅1
u4u4=u8
u4u4
Apply exponent rule: ab⋅ac=ab+cu4u4=u4+4=u4+4
Add the numbers: 4+4=8=u8
2⋅2u2u2=4u4
2⋅2u2u2
Multiply the numbers: 2⋅2=4=4u2u2
Apply exponent rule: ab⋅ac=ab+cu2u2=u2+2=4u2+2
Add the numbers: 2+2=4=4u4
1⋅1=1
1⋅1
Multiply the numbers: 1⋅1=1=1
=u8+2u4−4u4+1
Add similar elements: 2u4−4u4=−2u4=u8−2u4+1
=u8−2u4+1
=u8−2u4+1+12u2(u4−2u2+1)
Expand 12u2(u4−2u2+1):12u6−24u4+12u2
12u2(u4−2u2+1)
Distribute parentheses=12u2u4+12u2(−2u2)+12u2⋅1
Apply minus-plus rules+(−a)=−a=12u4u2−12⋅2u2u2+12⋅1⋅u2
Simplify 12u4u2−12⋅2u2u2+12⋅1⋅u2:12u6−24u4+12u2
12u4u2−12⋅2u2u2+12⋅1⋅u2
12u4u2=12u6
12u4u2
Apply exponent rule: ab⋅ac=ab+cu4u2=u4+2=12u4+2
Add the numbers: 4+2=6=12u6
12⋅2u2u2=24u4
12⋅2u2u2
Multiply the numbers: 12⋅2=24=24u2u2
Apply exponent rule: ab⋅ac=ab+cu2u2=u2+2=24u2+2
Add the numbers: 2+2=4=24u4
12⋅1⋅u2=12u2
12⋅1⋅u2
Multiply the numbers: 12⋅1=12=12u2
=12u6−24u4+12u2
=12u6−24u4+12u2
=u8−2u4+1+12u6−24u4+12u2
Simplify u8−2u4+1+12u6−24u4+12u2:u8+12u6−26u4+12u2+1
u8−2u4+1+12u6−24u4+12u2
Group like terms=u8+12u6−2u4−24u4+12u2+1
Add similar elements: −2u4−24u4=−26u4=u8+12u6−26u4+12u2+1
=u8+12u6−26u4+12u2+1
Expand 16u2(u2+1)2:16u6+32u4+16u2
16u2(u2+1)2
(u2+1)2=u4+2u2+1
(u2+1)2
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=u2,b=1
=(u2)2+2u2⋅1+12
Simplify (u2)2+2u2⋅1+12:u4+2u2+1
(u2)2+2u2⋅1+12
Apply rule 1a=112=1=(u2)2+2⋅1⋅u2+1
(u2)2=u4
(u2)2
Apply exponent rule: (ab)c=abc=u2⋅2
Multiply the numbers: 2⋅2=4=u4
2u2⋅1=2u2
2u2⋅1
Multiply the numbers: 2⋅1=2=2u2
=u4+2u2+1
=u4+2u2+1
=16u2(u4+2u2+1)
Distribute parentheses=16u2u4+16u2⋅2u2+16u2⋅1
=16u4u2+16⋅2u2u2+16⋅1⋅u2
Simplify 16u4u2+16⋅2u2u2+16⋅1⋅u2:16u6+32u4+16u2
16u4u2+16⋅2u2u2+16⋅1⋅u2
16u4u2=16u6
16u4u2
Apply exponent rule: ab⋅ac=ab+cu4u2=u4+2=16u4+2
Add the numbers: 4+2=6=16u6
16⋅2u2u2=32u4
16⋅2u2u2
Multiply the numbers: 16⋅2=32=32u2u2
Apply exponent rule: ab⋅ac=ab+cu2u2=u2+2=32u2+2
Add the numbers: 2+2=4=32u4
16⋅1⋅u2=16u2
16⋅1⋅u2
Multiply the numbers: 16⋅1=16=16u2
=16u6+32u4+16u2
=16u6+32u4+16u2
u8+12u6−26u4+12u2+1=16u6+32u4+16u2
Move 16u2to the left side
u8+12u6−26u4+12u2+1=16u6+32u4+16u2
Subtract 16u2 from both sidesu8+12u6−26u4+12u2+1−16u2=16u6+32u4+16u2−16u2
Simplifyu8+12u6−26u4−4u2+1=16u6+32u4
u8+12u6−26u4−4u2+1=16u6+32u4
Move 32u4to the left side
u8+12u6−26u4−4u2+1=16u6+32u4
Subtract 32u4 from both sidesu8+12u6−26u4−4u2+1−32u4=16u6+32u4−32u4
Simplifyu8+12u6−58u4−4u2+1=16u6
u8+12u6−58u4−4u2+1=16u6
Move 16u6to the left side
u8+12u6−58u4−4u2+1=16u6
Subtract 16u6 from both sidesu8+12u6−58u4−4u2+1−16u6=16u6−16u6
Simplifyu8−4u6−58u4−4u2+1=0
u8−4u6−58u4−4u2+1=0
Rewrite the equation with v=u2,v2=u4,v3=u6 and v4=u8v4−4v3−58v2−4v+1=0
Solve v4−4v3−58v2−4v+1=0:v≈0.10102…,v≈−0.17157…,v≈−5.82842…,v≈9.89897…
v4−4v3−58v2−4v+1=0
Find one solution for v4−4v3−58v2−4v+1=0 using Newton-Raphson:v≈0.10102…
v4−4v3−58v2−4v+1=0
Newton-Raphson Approximation Definition
f(v)=v4−4v3−58v2−4v+1
Find f′(v):4v3−12v2−116v−4
dvd​(v4−4v3−58v2−4v+1)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dvd​(v4)−dvd​(4v3)−dvd​(58v2)−dvd​(4v)+dvd​(1)
dvd​(v4)=4v3
dvd​(v4)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=4v4−1
Simplify=4v3
dvd​(4v3)=12v2
dvd​(4v3)
Take the constant out: (a⋅f)′=a⋅f′=4dvd​(v3)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=4⋅3v3−1
Simplify=12v2
dvd​(58v2)=116v
dvd​(58v2)
Take the constant out: (a⋅f)′=a⋅f′=58dvd​(v2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=58⋅2v2−1
Simplify=116v
dvd​(4v)=4
dvd​(4v)
Take the constant out: (a⋅f)′=a⋅f′=4dvdv​
Apply the common derivative: dvdv​=1=4⋅1
Simplify=4
dvd​(1)=0
dvd​(1)
Derivative of a constant: dxd​(a)=0=0
=4v3−12v2−116v−4+0
Simplify=4v3−12v2−116v−4
Let v0​=0Compute vn+1​ until Δvn+1​<0.000001
v1​=0.25:Δv1​=0.25
f(v0​)=04−4⋅03−58⋅02−4⋅0+1=1f′(v0​)=4⋅03−12⋅02−116⋅0−4=−4v1​=0.25
Δv1​=∣0.25−0∣=0.25Δv1​=0.25
v2​=0.14065…:Δv2​=0.10934…
f(v1​)=0.254−4⋅0.253−58⋅0.252−4⋅0.25+1=−3.68359375f′(v1​)=4⋅0.253−12⋅0.252−116⋅0.25−4=−33.6875v2​=0.14065…
Δv2​=∣0.14065…−0.25∣=0.10934…Δv2​=0.10934…
v3​=0.10556…:Δv3​=0.03508…
f(v2​)=0.14065…4−4⋅0.14065…3−58⋅0.14065…2−4⋅0.14065…+1=−0.72080…f′(v2​)=4⋅0.14065…3−12⋅0.14065…2−116⋅0.14065…−4=−20.54213…v3​=0.10556…
Δv3​=∣0.10556…−0.14065…∣=0.03508…Δv3​=0.03508…
v4​=0.10109…:Δv4​=0.00446…
f(v3​)=0.10556…4−4⋅0.10556…3−58⋅0.10556…2−4⋅0.10556…+1=−0.07319…f′(v3​)=4⋅0.10556…3−12⋅0.10556…2−116⋅0.10556…−4=−16.37457…v4​=0.10109…
Δv4​=∣0.10109…−0.10556…∣=0.00446…Δv4​=0.00446…
v5​=0.10102…:Δv5​=0.00007…
f(v4​)=0.10109…4−4⋅0.10109…3−58⋅0.10109…2−4⋅0.10109…+1=−0.00118…f′(v4​)=4⋅0.10109…3−12⋅0.10109…2−116⋅0.10109…−4=−15.84554…v5​=0.10102…
Δv5​=∣0.10102…−0.10109…∣=0.00007…Δv5​=0.00007…
v6​=0.10102…:Δv6​=2.08017E−8
f(v5​)=0.10102…4−4⋅0.10102…3−58⋅0.10102…2−4⋅0.10102…+1=−3.29431E−7f′(v5​)=4⋅0.10102…3−12⋅0.10102…2−116⋅0.10102…−4=−15.83672…v6​=0.10102…
Δv6​=∣0.10102…−0.10102…∣=2.08017E−8Δv6​=2.08017E−8
v≈0.10102…
Apply long division:v−0.10102…v4−4v3−58v2−4v+1​=v3−3.89897…v2−58.39387…v−9.89897…
v3−3.89897…v2−58.39387…v−9.89897…≈0
Find one solution for v3−3.89897…v2−58.39387…v−9.89897…=0 using Newton-Raphson:v≈−0.17157…
v3−3.89897…v2−58.39387…v−9.89897…=0
Newton-Raphson Approximation Definition
f(v)=v3−3.89897…v2−58.39387…v−9.89897…
Find f′(v):3v2−7.79795…v−58.39387…
dvd​(v3−3.89897…v2−58.39387…v−9.89897…)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dvd​(v3)−dvd​(3.89897…v2)−dvd​(58.39387…v)−dvd​(9.89897…)
dvd​(v3)=3v2
dvd​(v3)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=3v3−1
Simplify=3v2
dvd​(3.89897…v2)=7.79795…v
dvd​(3.89897…v2)
Take the constant out: (a⋅f)′=a⋅f′=3.89897…dvd​(v2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=3.89897…⋅2v2−1
Simplify=7.79795…v
dvd​(58.39387…v)=58.39387…
dvd​(58.39387…v)
Take the constant out: (a⋅f)′=a⋅f′=58.39387…dvdv​
Apply the common derivative: dvdv​=1=58.39387…⋅1
Simplify=58.39387…
dvd​(9.89897…)=0
dvd​(9.89897…)
Derivative of a constant: dxd​(a)=0=0
=3v2−7.79795…v−58.39387…−0
Simplify=3v2−7.79795…v−58.39387…
Let v0​=0Compute vn+1​ until Δvn+1​<0.000001
v1​=−0.16952…:Δv1​=0.16952…
f(v0​)=03−3.89897…⋅02−58.39387…⋅0−9.89897…=−9.89897…f′(v0​)=3⋅02−7.79795…⋅0−58.39387…=−58.39387…v1​=−0.16952…
Δv1​=∣−0.16952…−0∣=0.16952…Δv1​=0.16952…
v2​=−0.17157…:Δv2​=0.00205…
f(v1​)=(−0.16952…)3−3.89897…(−0.16952…)2−58.39387…(−0.16952…)−9.89897…=−0.11691…f′(v1​)=3(−0.16952…)2−7.79795…(−0.16952…)−58.39387…=−56.98574…v2​=−0.17157…
Δv2​=∣−0.17157…−(−0.16952…)∣=0.00205…Δv2​=0.00205…
v3​=−0.17157…:Δv3​=3.25836E−7
f(v2​)=(−0.17157…)3−3.89897…(−0.17157…)2−58.39387…(−0.17157…)−9.89897…=−0.00001…f′(v2​)=3(−0.17157…)2−7.79795…(−0.17157…)−58.39387…=−56.96764…v3​=−0.17157…
Δv3​=∣−0.17157…−(−0.17157…)∣=3.25836E−7Δv3​=3.25836E−7
v≈−0.17157…
Apply long division:v+0.17157…v3−3.89897…v2−58.39387…v−9.89897…​=v2−4.07055…v−57.69548…
v2−4.07055…v−57.69548…≈0
Find one solution for v2−4.07055…v−57.69548…=0 using Newton-Raphson:v≈−5.82842…
v2−4.07055…v−57.69548…=0
Newton-Raphson Approximation Definition
f(v)=v2−4.07055…v−57.69548…
Find f′(v):2v−4.07055…
dvd​(v2−4.07055…v−57.69548…)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dvd​(v2)−dvd​(4.07055…v)−dvd​(57.69548…)
dvd​(v2)=2v
dvd​(v2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=2v2−1
Simplify=2v
dvd​(4.07055…v)=4.07055…
dvd​(4.07055…v)
Take the constant out: (a⋅f)′=a⋅f′=4.07055…dvdv​
Apply the common derivative: dvdv​=1=4.07055…⋅1
Simplify=4.07055…
dvd​(57.69548…)=0
dvd​(57.69548…)
Derivative of a constant: dxd​(a)=0=0
=2v−4.07055…−0
Simplify=2v−4.07055…
Let v0​=−5Compute vn+1​ until Δvn+1​<0.000001
v1​=−5.87720…:Δv1​=0.87720…
f(v0​)=(−5)2−4.07055…(−5)−57.69548…=−12.34271…f′(v0​)=2(−5)−4.07055…=−14.07055…v1​=−5.87720…
Δv1​=∣−5.87720…−(−5)∣=0.87720…Δv1​=0.87720…
v2​=−5.82857…:Δv2​=0.04862…
f(v1​)=(−5.87720…)2−4.07055…(−5.87720…)−57.69548…=0.76948…f′(v1​)=2(−5.87720…)−4.07055…=−15.82495…v2​=−5.82857…
Δv2​=∣−5.82857…−(−5.87720…)∣=0.04862…Δv2​=0.04862…
v3​=−5.82842…:Δv3​=0.00015…
f(v2​)=(−5.82857…)2−4.07055…(−5.82857…)−57.69548…=0.00236…f′(v2​)=2(−5.82857…)−4.07055…=−15.72770…v3​=−5.82842…
Δv3​=∣−5.82842…−(−5.82857…)∣=0.00015…Δv3​=0.00015…
v4​=−5.82842…:Δv4​=1.43694E−9
f(v3​)=(−5.82842…)2−4.07055…(−5.82842…)−57.69548…=2.25994E−8f′(v3​)=2(−5.82842…)−4.07055…=−15.72740…v4​=−5.82842…
Δv4​=∣−5.82842…−(−5.82842…)∣=1.43694E−9Δv4​=1.43694E−9
v≈−5.82842…
Apply long division:v+5.82842…v2−4.07055…v−57.69548…​=v−9.89897…
v−9.89897…≈0
v≈9.89897…
The solutions arev≈0.10102…,v≈−0.17157…,v≈−5.82842…,v≈9.89897…
v≈0.10102…,v≈−0.17157…,v≈−5.82842…,v≈9.89897…
Substitute back v=u2,solve for u
Solve u2=0.10102…:u=5.0E165.05103E15​​,u=−5.0E165.05103E15​​
u2=0.10102…
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=0.10102…​,u=−0.10102…​
0.10102…​=5.0E165.05103E15​​
0.10102…​
Multiply and divide by 10 for every number after the decimal point.
There are 17 digits to the right of the decimal point, therefore multiply and divide by 2147483647
=1.0E171.0E17⋅0.10102…​​
Multiply the numbers: 1.0E17⋅0.10102…=1.01021E16=1.0E171.01021E16​​
Cancel 1.0E171.01021E16​:5.0E165.05103E15​
1.0E171.01021E16​
Factor the number: 1.01021E16=2⋅5.05103E15=1.0E172⋅5.05103E15​
Factor the number: 1.0E17=2⋅5.0E16=2⋅5.0E162⋅5.05103E15​
Cancel the common factor: 2=5.0E165.05103E15​
=5.0E165.05103E15​​
−0.10102…​=−5.0E165.05103E15​​
−0.10102…​
Multiply and divide by 10 for every number after the decimal point.
There are 17 digits to the right of the decimal point, therefore multiply and divide by 2147483647
=−1.0E171.0E17⋅0.10102…​​
Multiply the numbers: 1.0E17⋅0.10102…=1.01021E16=−1.0E171.01021E16​​
Cancel 1.0E171.01021E16​:5.0E165.05103E15​
1.0E171.01021E16​
Factor the number: 1.01021E16=2⋅5.05103E15=1.0E172⋅5.05103E15​
Factor the number: 1.0E17=2⋅5.0E16=2⋅5.0E162⋅5.05103E15​
Cancel the common factor: 2=5.0E165.05103E15​
=−5.0E165.05103E15​​
u=5.0E165.05103E15​​,u=−5.0E165.05103E15​​
Solve u2=−0.17157…:No Solution for u∈R
u2=−0.17157…
x2 cannot be negative for x∈RNoSolutionforu∈R
Solve u2=−5.82842…:No Solution for u∈R
u2=−5.82842…
x2 cannot be negative for x∈RNoSolutionforu∈R
Solve u2=9.89897…:u=5.0E144.94949E15​​,u=−5.0E144.94949E15​​
u2=9.89897…
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=9.89897…​,u=−9.89897…​
9.89897…​=5.0E144.94949E15​​
9.89897…​
Multiply and divide by 10 for every number after the decimal point.
There are 15 digits to the right of the decimal point, therefore multiply and divide by 2147483647
=1.0E151.0E15⋅9.89897…​​
Multiply the numbers: 1.0E15⋅9.89897…=9.89898E15=1.0E159.89898E15​​
Cancel 1.0E159.89898E15​:5.0E144.94949E15​
1.0E159.89898E15​
Factor the number: 9.89898E15=2⋅4.94949E15=1.0E152⋅4.94949E15​
Factor the number: 1.0E15=2⋅5.0E14=2⋅5.0E142⋅4.94949E15​
Cancel the common factor: 2=5.0E144.94949E15​
=5.0E144.94949E15​​
−9.89897…​=−5.0E144.94949E15​​
−9.89897…​
Multiply and divide by 10 for every number after the decimal point.
There are 15 digits to the right of the decimal point, therefore multiply and divide by 2147483647
=−1.0E151.0E15⋅9.89897…​​
Multiply the numbers: 1.0E15⋅9.89897…=9.89898E15=−1.0E159.89898E15​​
Cancel 1.0E159.89898E15​:5.0E144.94949E15​
1.0E159.89898E15​
Factor the number: 9.89898E15=2⋅4.94949E15=1.0E152⋅4.94949E15​
Factor the number: 1.0E15=2⋅5.0E14=2⋅5.0E142⋅4.94949E15​
Cancel the common factor: 2=5.0E144.94949E15​
=−5.0E144.94949E15​​
u=5.0E144.94949E15​​,u=−5.0E144.94949E15​​
The solutions are
u=5.0E165.05103E15​​,u=−5.0E165.05103E15​​,u=5.0E144.94949E15​​,u=−5.0E144.94949E15​​
u=5.0E165.05103E15​​,u=−5.0E165.05103E15​​,u=5.0E144.94949E15​​,u=−5.0E144.94949E15​​
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of (2u−u−1​)2+3(u+u−1u−u−1​)2 and compare to zero
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=5.0E165.05103E15​​,u=−5.0E165.05103E15​​,u=5.0E144.94949E15​​,u=−5.0E144.94949E15​​
u=5.0E165.05103E15​​,u=−5.0E165.05103E15​​,u=5.0E144.94949E15​​,u=−5.0E144.94949E15​​
Substitute back u=ex,solve for x
Solve ex=5.0E165.05103E15​​:x=21​ln(5.0E165.05103E15​)
ex=5.0E165.05103E15​​
Apply exponent rules
ex=5.0E165.05103E15​​
Apply exponent rule: a​=a21​5.0E165.05103E15​​=(5.0E165.05103E15​)21​ex=(5.0E165.05103E15​)21​
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln((5.0E165.05103E15​)21​)
Apply log rule: ln(ea)=aln(ex)=xx=ln((5.0E165.05103E15​)21​)
Apply log rule: ln(xa)=a⋅ln(x)ln((5.0E165.05103E15​)21​)=21​ln(5.0E165.05103E15​)x=21​ln(5.0E165.05103E15​)
x=21​ln(5.0E165.05103E15​)
Solve ex=−5.0E165.05103E15​​:No Solution for x∈R
ex=−5.0E165.05103E15​​
af(x) cannot be zero or negative for x∈RNoSolutionforx∈R
Solve ex=5.0E144.94949E15​​:x=21​ln(5.0E144.94949E15​)
ex=5.0E144.94949E15​​
Apply exponent rules
ex=5.0E144.94949E15​​
Apply exponent rule: a​=a21​5.0E144.94949E15​​=(5.0E144.94949E15​)21​ex=(5.0E144.94949E15​)21​
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln((5.0E144.94949E15​)21​)
Apply log rule: ln(ea)=aln(ex)=xx=ln((5.0E144.94949E15​)21​)
Apply log rule: ln(xa)=a⋅ln(x)ln((5.0E144.94949E15​)21​)=21​ln(5.0E144.94949E15​)x=21​ln(5.0E144.94949E15​)
x=21​ln(5.0E144.94949E15​)
Solve ex=−5.0E144.94949E15​​:No Solution for x∈R
ex=−5.0E144.94949E15​​
af(x) cannot be zero or negative for x∈RNoSolutionforx∈R
x=21​ln(5.0E165.05103E15​),x=21​ln(5.0E144.94949E15​)
x=21​ln(5.0E165.05103E15​),x=21​ln(5.0E144.94949E15​)

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

(sin(51))/(18)=(sin(c))/(17)0= 1/2 cos(8sqrt(2)t)+1/8 sin(8sqrt(2)t)3cos(x)cot(x)+7=5csc(x)-10sin(2x)=0sec(x)sin(x)-3sin(x)=0,0<= x<= 360
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024