Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

3tan^4(θ)+1= 2/(tan^2(θ))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

3tan4(θ)+1=tan2(θ)2​

Solution

θ=0.71287…+πn,θ=−0.71287…+πn
+1
Degrees
θ=40.84445…∘+180∘n,θ=−40.84445…∘+180∘n
Solution steps
3tan4(θ)+1=tan2(θ)2​
Solve by substitution
3tan4(θ)+1=tan2(θ)2​
Let: tan(θ)=u3u4+1=u22​
3u4+1=u22​:u=0.74741…​,u=−0.74741…​
3u4+1=u22​
Multiply both sides by u2
3u4+1=u22​
Multiply both sides by u23u4u2+1⋅u2=u22​u2
Simplify 3u4u2:3u6
3u4u2+1⋅u2=u22​u2
Apply exponent rule: ab⋅ac=ab+cu4u2=u4+2=3u4+2
Add the numbers: 4+2=6=3u6
3u6+u2=2
3u6+u2=2
Solve 3u6+u2=2:u=0.74741…​,u=−0.74741…​
3u6+u2=2
Move 2to the left side
3u6+u2=2
Subtract 2 from both sides3u6+u2−2=2−2
Simplify3u6+u2−2=0
3u6+u2−2=0
Rewrite the equation with v=u2 and v3=u63v3+v−2=0
Solve 3v3+v−2=0:v≈0.74741…
3v3+v−2=0
Find one solution for 3v3+v−2=0 using Newton-Raphson:v≈0.74741…
3v3+v−2=0
Newton-Raphson Approximation Definition
f(v)=3v3+v−2
Find f′(v):9v2+1
dvd​(3v3+v−2)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dvd​(3v3)+dvdv​−dvd​(2)
dvd​(3v3)=9v2
dvd​(3v3)
Take the constant out: (a⋅f)′=a⋅f′=3dvd​(v3)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=3⋅3v3−1
Simplify=9v2
dvdv​=1
dvdv​
Apply the common derivative: dvdv​=1=1
dvd​(2)=0
dvd​(2)
Derivative of a constant: dxd​(a)=0=0
=9v2+1−0
Simplify=9v2+1
Let v0​=2Compute vn+1​ until Δvn+1​<0.000001
v1​=1.35135…:Δv1​=0.64864…
f(v0​)=3⋅23+2−2=24f′(v0​)=9⋅22+1=37v1​=1.35135…
Δv1​=∣1.35135…−2∣=0.64864…Δv1​=0.64864…
v2​=0.96393…:Δv2​=0.38741…
f(v1​)=3⋅1.35135…3+1.35135…−2=6.75466…f′(v1​)=9⋅1.35135…2+1=17.43535…v2​=0.96393…
Δv2​=∣0.96393…−1.35135…∣=0.38741…Δv2​=0.38741…
v3​=0.78760…:Δv3​=0.17633…
f(v2​)=3⋅0.96393…3+0.96393…−2=1.65095…f′(v2​)=9⋅0.96393…2+1=9.36261…v3​=0.78760…
Δv3​=∣0.78760…−0.96393…∣=0.17633…Δv3​=0.17633…
v4​=0.74912…:Δv4​=0.03847…
f(v3​)=3⋅0.78760…3+0.78760…−2=0.25330…f′(v3​)=9⋅0.78760…2+1=6.58288…v4​=0.74912…
Δv4​=∣0.74912…−0.78760…∣=0.03847…Δv4​=0.03847…
v5​=0.74741…:Δv5​=0.00170…
f(v4​)=3⋅0.74912…3+0.74912…−2=0.01032…f′(v4​)=9⋅0.74912…2+1=6.05069…v5​=0.74741…
Δv5​=∣0.74741…−0.74912…∣=0.00170…Δv5​=0.00170…
v6​=0.74741…:Δv6​=3.25433E−6
f(v5​)=3⋅0.74741…3+0.74741…−2=0.00001…f′(v5​)=9⋅0.74741…2+1=6.02770…v6​=0.74741…
Δv6​=∣0.74741…−0.74741…∣=3.25433E−6Δv6​=3.25433E−6
v7​=0.74741…:Δv7​=1.1819E−11
f(v6​)=3⋅0.74741…3+0.74741…−2=7.12408E−11f′(v6​)=9⋅0.74741…2+1=6.02766…v7​=0.74741…
Δv7​=∣0.74741…−0.74741…∣=1.1819E−11Δv7​=1.1819E−11
v≈0.74741…
Apply long division:v−0.74741…3v3+v−2​=3v2+2.24224…v+2.67588…
3v2+2.24224…v+2.67588…≈0
Find one solution for 3v2+2.24224…v+2.67588…=0 using Newton-Raphson:No Solution for v∈R
3v2+2.24224…v+2.67588…=0
Newton-Raphson Approximation Definition
f(v)=3v2+2.24224…v+2.67588…
Find f′(v):6v+2.24224…
dvd​(3v2+2.24224…v+2.67588…)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dvd​(3v2)+dvd​(2.24224…v)+dvd​(2.67588…)
dvd​(3v2)=6v
dvd​(3v2)
Take the constant out: (a⋅f)′=a⋅f′=3dvd​(v2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=3⋅2v2−1
Simplify=6v
dvd​(2.24224…v)=2.24224…
dvd​(2.24224…v)
Take the constant out: (a⋅f)′=a⋅f′=2.24224…dvdv​
Apply the common derivative: dvdv​=1=2.24224…⋅1
Simplify=2.24224…
dvd​(2.67588…)=0
dvd​(2.67588…)
Derivative of a constant: dxd​(a)=0=0
=6v+2.24224…+0
Simplify=6v+2.24224…
Let v0​=−1Compute vn+1​ until Δvn+1​<0.000001
v1​=−0.08625…:Δv1​=0.91374…
f(v0​)=3(−1)2+2.24224…(−1)+2.67588…=3.43364…f′(v0​)=6(−1)+2.24224…=−3.75775…v1​=−0.08625…
Δv1​=∣−0.08625…−(−1)∣=0.91374…Δv1​=0.91374…
v2​=−1.53853…:Δv2​=1.45228…
f(v1​)=3(−0.08625…)2+2.24224…(−0.08625…)+2.67588…=2.50480…f′(v1​)=6(−0.08625…)+2.24224…=1.72473…v2​=−1.53853…
Δv2​=∣−1.53853…−(−0.08625…)∣=1.45228…Δv2​=1.45228…
v3​=−0.63319…:Δv3​=0.90533…
f(v2​)=3(−1.53853…)2+2.24224…(−1.53853…)+2.67588…=6.32739…f′(v2​)=6(−1.53853…)+2.24224…=−6.98896…v3​=−0.63319…
Δv3​=∣−0.63319…−(−1.53853…)∣=0.90533…Δv3​=0.90533…
v4​=0.94614…:Δv4​=1.57933…
f(v3​)=3(−0.63319…)2+2.24224…(−0.63319…)+2.67588…=2.45891…f′(v3​)=6(−0.63319…)+2.24224…=−1.55693…v4​=0.94614…
Δv4​=∣0.94614…−(−0.63319…)∣=1.57933…Δv4​=1.57933…
v5​=0.00121…:Δv5​=0.94492…
f(v4​)=3⋅0.94614…2+2.24224…⋅0.94614…+2.67588…=7.48291…f′(v4​)=6⋅0.94614…+2.24224…=7.91909…v5​=0.00121…
Δv5​=∣0.00121…−0.94614…∣=0.94492…Δv5​=0.94492…
v6​=−1.18951…:Δv6​=1.19073…
f(v5​)=3⋅0.00121…2+2.24224…⋅0.00121…+2.67588…=2.67862…f′(v5​)=6⋅0.00121…+2.24224…=2.24956…v6​=−1.18951…
Δv6​=∣−1.18951…−0.00121…∣=1.19073…Δv6​=1.19073…
v7​=−0.32052…:Δv7​=0.86898…
f(v6​)=3(−1.18951…)2+2.24224…(−1.18951…)+2.67588…=4.25353…f′(v6​)=6(−1.18951…)+2.24224…=−4.89483…v7​=−0.32052…
Δv7​=∣−0.32052…−(−1.18951…)∣=0.86898…Δv7​=0.86898…
v8​=−7.42043…:Δv8​=7.09990…
f(v7​)=3(−0.32052…)2+2.24224…(−0.32052…)+2.67588…=2.26540…f′(v7​)=6(−0.32052…)+2.24224…=0.31907…v8​=−7.42043…
Δv8​=∣−7.42043…−(−0.32052…)∣=7.09990…Δv8​=7.09990…
Cannot find solution
The solution isv≈0.74741…
v≈0.74741…
Substitute back v=u2,solve for u
Solve u2=0.74741…:u=0.74741…​,u=−0.74741…​
u2=0.74741…
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=0.74741…​,u=−0.74741…​
The solutions are
u=0.74741…​,u=−0.74741…​
u=0.74741…​,u=−0.74741…​
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of u22​ and compare to zero
Solve u2=0:u=0
u2=0
Apply rule xn=0⇒x=0
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=0.74741…​,u=−0.74741…​
Substitute back u=tan(θ)tan(θ)=0.74741…​,tan(θ)=−0.74741…​
tan(θ)=0.74741…​,tan(θ)=−0.74741…​
tan(θ)=0.74741…​:θ=arctan(0.74741…​)+πn
tan(θ)=0.74741…​
Apply trig inverse properties
tan(θ)=0.74741…​
General solutions for tan(θ)=0.74741…​tan(x)=a⇒x=arctan(a)+πnθ=arctan(0.74741…​)+πn
θ=arctan(0.74741…​)+πn
tan(θ)=−0.74741…​:θ=arctan(−0.74741…​)+πn
tan(θ)=−0.74741…​
Apply trig inverse properties
tan(θ)=−0.74741…​
General solutions for tan(θ)=−0.74741…​tan(x)=−a⇒x=arctan(−a)+πnθ=arctan(−0.74741…​)+πn
θ=arctan(−0.74741…​)+πn
Combine all the solutionsθ=arctan(0.74741…​)+πn,θ=arctan(−0.74741…​)+πn
Show solutions in decimal formθ=0.71287…+πn,θ=−0.71287…+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

tan(θ/2+pi/4)=1,0<= θ<= 2pisin(x+pi/6)+sin(x-pi/6)=(sqrt(3))/2solvefor c,s=(sin^2(c))/23sin^2(θ)+4cos^2(θ)=4sin(3x)+1=cos(3x)

Frequently Asked Questions (FAQ)

  • What is the general solution for 3tan^4(θ)+1= 2/(tan^2(θ)) ?

    The general solution for 3tan^4(θ)+1= 2/(tan^2(θ)) is θ=0.71287…+pin,θ=-0.71287…+pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024