Lösungen
Integrale RechnerAbleitung RechnerAlgebra RechnerMatrix RechnerMehr...
Grafiken
LiniendiagrammExponentieller GraphQuadratischer GraphSinusdiagrammMehr...
Rechner
BMI-RechnerZinseszins-RechnerProzentrechnerBeschleunigungsrechnerMehr...
Geometrie
Satz des Pythagoras-RechnerKreis Fläche RechnerGleichschenkliges Dreieck RechnerDreiecke RechnerMehr...
AI Chat
Werkzeuge
NotizbuchGruppenSpickzettelArbeitsblätterÜbungenÜberprüfe
de
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Beliebt Trigonometrie >

beweisen cos(x-(3pi)/2)=-sin(x)

  • Voralgebra
  • Algebra
  • Vorkalkül
  • Rechnen
  • Funktionen
  • Lineare Algebra
  • Trigonometrie
  • Statistik
  • Chemie
  • Ökonomie
  • Umrechnungen

Lösung

beweisen cos(x−23π​)=−sin(x)

Lösung

Wahr
Schritte zur Lösung
cos(x−23π​)=−sin(x)
Manipuliere die linke Seitecos(x−23π​)
Umschreiben mit Hilfe von Trigonometrie-Identitäten
cos(x−23π​)
Benutze die Winkel-Differenz-Identität: cos(s−t)=cos(s)cos(t)+sin(s)sin(t)=cos(x)cos(23π​)+sin(x)sin(23π​)
Vereinfache cos(x)cos(23π​)+sin(x)sin(23π​):−sin(x)
cos(x)cos(23π​)+sin(x)sin(23π​)
cos(x)cos(23π​)=0
cos(x)cos(23π​)
cos(23π​)=0
cos(23π​)
Umschreiben mit Hilfe von Trigonometrie-Identitäten:cos(π)cos(2π​)−sin(π)sin(2π​)
cos(23π​)
Schreibe cos(23π​)als cos(π+2π​)=cos(π+2π​)
Benutze die Identität der Winkelsumme: cos(s+t)=cos(s)cos(t)−sin(s)sin(t)=cos(π)cos(2π​)−sin(π)sin(2π​)
=cos(π)cos(2π​)−sin(π)sin(2π​)
Verwende die folgende triviale Identität:cos(π)=(−1)
cos(π)
cos(x) Periodizitätstabelle mit 2πn Zyklus:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=(−1)
Verwende die folgende triviale Identität:cos(2π​)=0
cos(2π​)
cos(x) Periodizitätstabelle mit 2πn Zyklus:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=0
Verwende die folgende triviale Identität:sin(π)=0
sin(π)
sin(x) Periodizitätstabelle mit 2πn Zyklus:
=0
Verwende die folgende triviale Identität:sin(2π​)=1
sin(2π​)
sin(x) Periodizitätstabelle mit 2πn Zyklus:
=1
=(−1)⋅0−0⋅1
Vereinfache=0
=0⋅cos(x)
Wende Regel an 0⋅a=0=0
sin(x)sin(23π​)=−sin(x)
sin(x)sin(23π​)
sin(23π​)=−1
sin(23π​)
Umschreiben mit Hilfe von Trigonometrie-Identitäten:sin(π)cos(2π​)+cos(π)sin(2π​)
sin(23π​)
Schreibe sin(23π​)als sin(π+2π​)=sin(π+2π​)
Benutze die Identität der Winkelsumme: sin(s+t)=sin(s)cos(t)+cos(s)sin(t)=sin(π)cos(2π​)+cos(π)sin(2π​)
=sin(π)cos(2π​)+cos(π)sin(2π​)
Verwende die folgende triviale Identität:sin(π)=0
sin(π)
sin(x) Periodizitätstabelle mit 2πn Zyklus:
=0
Verwende die folgende triviale Identität:cos(2π​)=0
cos(2π​)
cos(x) Periodizitätstabelle mit 2πn Zyklus:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=0
Verwende die folgende triviale Identität:cos(π)=(−1)
cos(π)
cos(x) Periodizitätstabelle mit 2πn Zyklus:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=(−1)
Verwende die folgende triviale Identität:sin(2π​)=1
sin(2π​)
sin(x) Periodizitätstabelle mit 2πn Zyklus:
=1
=0⋅0+(−1)⋅1
Vereinfache=−1
=(−1)sin(x)
Fasse zusammen=−sin(x)
=0−sin(x)
0−sin(x)=−sin(x)=−sin(x)
=−sin(x)
=−sin(x)
Wir haben gezeigt, dass beide Seiten die gleiche Form annehmen können⇒Wahr

Beliebte Beispiele

beweisen sin^2(x)sec^2(x)+1=sec^2(x)provesin2(x)sec2(x)+1=sec2(x)beweisen cos(a+b)-cos(a-b)=-2sin(a)sin(b)provecos(a+b)−cos(a−b)=−2sin(a)sin(b)beweisen (tan(β)+sec(β))(1-sin(β))=cos(β)prove(tan(β)+sec(β))(1−sin(β))=cos(β)beweisen sin(α+β)=sin(α)cos(β)+sin(β)cos(α)provesin(α+β)=sin(α)cos(β)+sin(β)cos(α)beweisen-cos(-x)+sec(x)=tan(x)sin(x)prove−cos(−x)+sec(x)=tan(x)sin(x)
LernwerkzeugeKI-Mathe-LöserAI ChatArbeitsblätterÜbungenSpickzettelRechnerGrafikrechnerGeometrie-RechnerLösung überprüfen
AppsSymbolab App (Android)Grafikrechner (Android)Übungen (Android)Symbolab App (iOS)Grafikrechner (iOS)Übungen (iOS)Chrome-Erweiterung
UnternehmenÜber SymbolabBlogHilfe
LegalDatenschutzbestimmungenService TermsCookiesCookie-EinstellungenVerkaufen oder teilen Sie meine persönlichen Daten nichtUrheberrecht, Community-Richtlinien, DSA und andere rechtliche RessourcenLearneo Rechtszentrum
Soziale Medien
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024