Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

prove sec^2(a)+csc^2(a)=sec^2(a)csc^2(a)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

prove sec2(a)+csc2(a)=sec2(a)csc2(a)

Solution

True
Solution steps
sec2(a)+csc2(a)=sec2(a)csc2(a)
Manipulating left sidesec2(a)+csc2(a)
Express with sin, cos
csc2(a)+sec2(a)
Use the basic trigonometric identity: csc(x)=sin(x)1​=(sin(a)1​)2+sec2(a)
Use the basic trigonometric identity: sec(x)=cos(x)1​=(sin(a)1​)2+(cos(a)1​)2
Simplify (sin(a)1​)2+(cos(a)1​)2:sin2(a)cos2(a)cos2(a)+sin2(a)​
(sin(a)1​)2+(cos(a)1​)2
(sin(a)1​)2=sin2(a)1​
(sin(a)1​)2
Apply exponent rule: (ba​)c=bcac​=sin2(a)12​
Apply rule 1a=112=1=sin2(a)1​
(cos(a)1​)2=cos2(a)1​
(cos(a)1​)2
Apply exponent rule: (ba​)c=bcac​=cos2(a)12​
Apply rule 1a=112=1=cos2(a)1​
=sin2(a)1​+cos2(a)1​
Least Common Multiplier of sin2(a),cos2(a):sin2(a)cos2(a)
sin2(a),cos2(a)
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in sin2(a) or cos2(a)=sin2(a)cos2(a)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM sin2(a)cos2(a)
For sin2(a)1​:multiply the denominator and numerator by cos2(a)sin2(a)1​=sin2(a)cos2(a)1⋅cos2(a)​=sin2(a)cos2(a)cos2(a)​
For cos2(a)1​:multiply the denominator and numerator by sin2(a)cos2(a)1​=cos2(a)sin2(a)1⋅sin2(a)​=sin2(a)cos2(a)sin2(a)​
=sin2(a)cos2(a)cos2(a)​+sin2(a)cos2(a)sin2(a)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sin2(a)cos2(a)cos2(a)+sin2(a)​
=sin2(a)cos2(a)cos2(a)+sin2(a)​
=cos2(a)sin2(a)cos2(a)+sin2(a)​
Rewrite using trig identities
cos2(a)sin2(a)cos2(a)+sin2(a)​
Use the Pythagorean identity: cos2(x)+sin2(x)=1=cos2(a)sin2(a)1​
=cos2(a)sin2(a)1​
Rewrite using trig identities
Use the basic trigonometric identity: sin(x)=csc(x)1​cos2(a)(csc(a)1​)21​
Use the basic trigonometric identity: cos(x)=sec(x)1​(sec(a)1​)2(csc(a)1​)21​
Simplify
(sec(a)1​)2(csc(a)1​)21​
(sec(a)1​)2=sec2(a)1​
(sec(a)1​)2
Apply exponent rule: (ba​)c=bcac​=sec2(a)12​
Apply rule 1a=112=1=sec2(a)1​
=(csc(a)1​)2sec2(a)1​1​
(csc(a)1​)2=csc2(a)1​
(csc(a)1​)2
Apply exponent rule: (ba​)c=bcac​=csc2(a)12​
Apply rule 1a=112=1=csc2(a)1​
=sec2(a)1​⋅csc2(a)1​1​
Multiply sec2(a)1​⋅csc2(a)1​:sec2(a)csc2(a)1​
sec2(a)1​⋅csc2(a)1​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=sec2(a)csc2(a)1⋅1​
Multiply the numbers: 1⋅1=1=sec2(a)csc2(a)1​
=sec2(a)csc2(a)1​1​
Apply the fraction rule: cb​1​=bc​=1sec2(a)csc2(a)​
Apply rule 1a​=a=sec2(a)csc2(a)
sec2(a)csc2(a)
sec2(a)csc2(a)
We showed that the two sides could take the same form⇒True

Popular Examples

prove (2sin(x)+cos(x))^2+(2cos(x)-sin(x))^2=5prove cos(a)(sec(a)-cos(a))=sin^2(a)prove tan(x)cos(x)csc(x)=1prove (csc^4(x)-1)/(1+csc^2(x))=cot^2(x)prove 1+sin(2θ)=(cos(θ)sin(θ))^2

Frequently Asked Questions (FAQ)

  • Is sec^2(a)+csc^2(a)=sec^2(a)csc^2(a) ?

    The answer to whether sec^2(a)+csc^2(a)=sec^2(a)csc^2(a) is True
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024