Solution
prove
Solution
Solution steps
Manipulating left side
Rewrite using trig identities
Use the basic trigonometric identity:
Use the Angle Difference identity:
Use the Angle Difference identity:
Simplify
Simplify
Use the following trivial identity:
periodicity table with cycle:
Multiply:
Simplify
Use the following trivial identity:
periodicity table with cycle:
Apply rule
Simplify
Use the following trivial identity:
periodicity table with cycle:
Apply rule
Simplify
Use the following trivial identity:
periodicity table with cycle:
Multiply:
Use the basic trigonometric identity:
We showed that the two sides could take the same form
Popular Examples
prove sec(2a)=(csc^2(a))/(cot^2(a)-1)prove (sin(2α))/(1+cos(2α))=tan(α)prove cos(t)+tan(t)sin(t)=sec(t)prove cos(4θ)=1-8sin^2(θ)cos^2(θ)prove cos^6(105)=((1+cos(210))/2)^3
Frequently Asked Questions (FAQ)
Is tan(pi/2-θ)=cot(θ) ?
The answer to whether tan(pi/2-θ)=cot(θ) is True