Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

csc(x)>1

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

csc(x)>1

Solution

2πn<x<2π​+2πnor2π​+2πn<x<π+2πn
+2
Interval Notation
(2πn,2π​+2πn)∪(2π​+2πn,π+2πn)
Decimal
2πn<x<1.57079…+2πnor1.57079…+2πn<x<3.14159…+2πn
Solution steps
csc(x)>1
Express with sin, cos
csc(x)>1
Use the basic trigonometric identity: csc(x)=sin(x)1​sin(x)1​>1
sin(x)1​>1
Rewrite in standard form
sin(x)1​>1
Subtract 1 from both sidessin(x)1​−1>1−1
Simplifysin(x)1​−1>0
Simplify sin(x)1​−1:sin(x)1−sin(x)​
sin(x)1​−1
Convert element to fraction: 1=sin(x)1sin(x)​=sin(x)1​−sin(x)1⋅sin(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sin(x)1−1⋅sin(x)​
Multiply: 1⋅sin(x)=sin(x)=sin(x)1−sin(x)​
sin(x)1−sin(x)​>0
sin(x)1−sin(x)​>0
Identify the intervals
Find the signs of the factors of sin(x)1−sin(x)​
Find the signs of 1−sin(x)
1−sin(x)=0:sin(x)=1
1−sin(x)=0
Move 1to the right side
1−sin(x)=0
Subtract 1 from both sides1−sin(x)−1=0−1
Simplify−sin(x)=−1
−sin(x)=−1
Divide both sides by −1
−sin(x)=−1
Divide both sides by −1−1−sin(x)​=−1−1​
Simplifysin(x)=1
sin(x)=1
1−sin(x)<0:sin(x)>1
1−sin(x)<0
Move 1to the right side
1−sin(x)<0
Subtract 1 from both sides1−sin(x)−1<0−1
Simplify−sin(x)<−1
−sin(x)<−1
Multiply both sides by −1
−sin(x)<−1
Multiply both sides by -1 (reverse the inequality)(−sin(x))(−1)>(−1)(−1)
Simplifysin(x)>1
sin(x)>1
1−sin(x)>0:sin(x)<1
1−sin(x)>0
Move 1to the right side
1−sin(x)>0
Subtract 1 from both sides1−sin(x)−1>0−1
Simplify−sin(x)>−1
−sin(x)>−1
Multiply both sides by −1
−sin(x)>−1
Multiply both sides by -1 (reverse the inequality)(−sin(x))(−1)<(−1)(−1)
Simplifysin(x)<1
sin(x)<1
Find the signs of sin(x)
sin(x)=0
sin(x)<0
sin(x)>0
Find singularity points
Find the zeros of the denominator sin(x):sin(x)=0
Summarize in a table:1−sin(x)sin(x)sin(x)1−sin(x)​​sin(x)<0+−−​sin(x)=0+0Undefined​0<sin(x)<1+++​sin(x)=10+0​sin(x)>1−+−​​
Identify the intervals that satisfy the required condition: >00<sin(x)<1
0<sin(x)<1
If a<u<bthen a<uandu<b0<sin(x)andsin(x)<1
0<sin(x):2πn<x<π+2πn
0<sin(x)
Switch sidessin(x)>0
For sin(x)>a, if −1≤a<1 then arcsin(a)+2πn<x<π−arcsin(a)+2πnarcsin(0)+2πn<x<π−arcsin(0)+2πn
Simplify arcsin(0):0
arcsin(0)
Use the following trivial identity:arcsin(0)=0x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=0
Simplify π−arcsin(0):π
π−arcsin(0)
Use the following trivial identity:arcsin(0)=0x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=π−0
π−0=π=π
0+2πn<x<π+2πn
Simplify2πn<x<π+2πn
sin(x)<1:−23π​+2πn<x<2π​+2πn
sin(x)<1
For sin(x)<a, if −1<a≤1 then −π−arcsin(a)+2πn<x<arcsin(a)+2πn−π−arcsin(1)+2πn<x<arcsin(1)+2πn
Simplify −π−arcsin(1):−23π​
−π−arcsin(1)
Use the following trivial identity:arcsin(1)=2π​x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=−π−2π​
Simplify
−π−2π​
Convert element to fraction: π=2π2​=−2π2​−2π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2−π2−π​
Add similar elements: −2π−π=−3π=2−3π​
Apply the fraction rule: b−a​=−ba​=−23π​
=−23π​
Simplify arcsin(1):2π​
arcsin(1)
Use the following trivial identity:arcsin(1)=2π​x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=2π​
−23π​+2πn<x<2π​+2πn
Combine the intervals2πn<x<π+2πnand−23π​+2πn<x<2π​+2πn
Merge Overlapping Intervals2πn<x<2π​+2πnor2π​+2πn<x<π+2πn

Popular Examples

1/(sin^2(x))-1/(cos^2(x))>= 8/3cos(x)>= sin(x)sin(x)<1tan(x)<0.7sin(2x)>0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024