Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

-1/5 sin((2pi)/5 (x+1))+1<= 16/15

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

−51​sin(52π​(x+1))+1≤1516​

Solution

2π−5arcsin(31​)−2π​+5n≤x≤2π3π+5arcsin(31​)​+5n
+2
Interval Notation
[2π−5arcsin(31​)−2π​+5n,2π3π+5arcsin(31​)​+5n]
Decimal
−1.27043…+5n≤x≤1.77043…+5n
Solution steps
−51​sin(52π​(x+1))+1≤1516​
Move 1to the right side
−51​sin(52π​(x+1))+1≤1516​
Subtract 1 from both sides−51​sin(52π​(x+1))+1−1≤1516​−1
Simplify
−51​sin(52π​(x+1))+1−1≤1516​−1
Simplify −51​sin(52π​(x+1))+1−1:−51​sin(52π​(x+1))
−51​sin(52π​(x+1))+1−1
Add similar elements: 1−1≤0
=−51​sin(52π​(x+1))
Simplify 1516​−1:151​
1516​−1
Convert element to fraction: 1=151⋅15​=−151⋅15​+1516​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=15−1⋅15+16​
−1⋅15+16=1
−1⋅15+16
Multiply the numbers: 1⋅15=15=−15+16
Add/Subtract the numbers: −15+16=1=1
=151​
−51​sin(52π​(x+1))≤151​
−51​sin(52π​(x+1))≤151​
−51​sin(52π​(x+1))≤151​
Multiply both sides by −1
−51​sin(52π​(x+1))≤151​
Multiply both sides by -1 (reverse the inequality)(−51​sin(52π​(x+1)))(−1)≥151⋅(−1)​
Simplify51​sin(52π​(x+1))≥−151​
51​sin(52π​(x+1))≥−151​
Multiply both sides by 5
51​sin(52π​(x+1))≥−151​
Multiply both sides by 55⋅51​sin(52π​(x+1))≥5(−151​)
Simplify
5⋅51​sin(52π​(x+1))≥5(−151​)
Simplify 5⋅51​sin(52π​(x+1)):sin(52π​(x+1))
5⋅51​sin(52π​(x+1))
Multiply fractions: a⋅cb​=ca⋅b​=51⋅5​sin(52π​(x+1))
Cancel the common factor: 5=sin(52π​(x+1))⋅1
Multiply: sin(52π​(x+1))⋅1=sin(52π​(x+1))=sin(52π​(x+1))
Simplify 5(−151​):−31​
5(−151​)
Remove parentheses: (−a)=−a=−5⋅151​
Multiply fractions: a⋅cb​=ca⋅b​=−151⋅5​
Multiply the numbers: 1⋅5=5=−155​
Cancel the common factor: 5=−31​
sin(52π​(x+1))≥−31​
sin(52π​(x+1))≥−31​
sin(52π​(x+1))≥−31​
For sin(x)≥a, if −1<a<1 then arcsin(a)+2πn≤x≤π−arcsin(a)+2πnarcsin(−31​)+2πn≤52π​(x+1)≤π−arcsin(−31​)+2πn
If a≤u≤bthen a≤uandu≤barcsin(−31​)+2πn≤52π​(x+1)and52π​(x+1)≤π−arcsin(−31​)+2πn
arcsin(−31​)+2πn≤52π​(x+1):x≥2π−5arcsin(31​)−2π​+5n
arcsin(−31​)+2πn≤52π​(x+1)
Switch sides52π​(x+1)≥arcsin(−31​)+2πn
Simplify arcsin(−31​)+2πn:−arcsin(31​)+2πn
arcsin(−31​)+2πn
Use the following property: arcsin(−x)=−arcsin(x)arcsin(−31​)=−arcsin(31​)=−arcsin(31​)+2πn
52π​(x+1)≥−arcsin(31​)+2πn
Multiply both sides by 5
52π​(x+1)≥−arcsin(31​)+2πn
Multiply both sides by 55⋅52π​(x+1)≥−5arcsin(31​)+5⋅2πn
Simplify
5⋅52π​(x+1)≥−5arcsin(31​)+5⋅2πn
Simplify 5⋅52π​(x+1):2π(x+1)
5⋅52π​(x+1)
Multiply fractions: a⋅cb​=ca⋅b​=52⋅5π​(x+1)
Cancel the common factor: 5=(x+1)⋅2π
Simplify −5arcsin(31​)+5⋅2πn:−5arcsin(31​)+10πn
−5arcsin(31​)+5⋅2πn
Multiply the numbers: 5⋅2=10=−5arcsin(31​)+10πn
2π(x+1)≥−5arcsin(31​)+10πn
2π(x+1)≥−5arcsin(31​)+10πn
2π(x+1)≥−5arcsin(31​)+10πn
Divide both sides by 2π
2π(x+1)≥−5arcsin(31​)+10πn
Divide both sides by 2π2π2π(x+1)​≥−2π5arcsin(31​)​+2π10πn​
Simplify
2π2π(x+1)​≥−2π5arcsin(31​)​+2π10πn​
Simplify 2π2π(x+1)​:x+1
2π2π(x+1)​
Divide the numbers: 22​=1=ππ(x+1)​
Cancel the common factor: π=x+1
Simplify −2π5arcsin(31​)​+2π10πn​:−2π5arcsin(31​)​+5n
−2π5arcsin(31​)​+2π10πn​
Cancel 2π10πn​:5n
2π10πn​
Cancel 2π10πn​:5n
2π10πn​
Divide the numbers: 210​=5=π5πn​
Cancel the common factor: π=5n
=5n
=−2π5arcsin(31​)​+5n
x+1≥−2π5arcsin(31​)​+5n
x+1≥−2π5arcsin(31​)​+5n
x+1≥−2π5arcsin(31​)​+5n
Move 1to the right side
x+1≥−2π5arcsin(31​)​+5n
Subtract 1 from both sidesx+1−1≥−2π5arcsin(31​)​+5n−1
Simplifyx≥−2π5arcsin(31​)​+5n−1
x≥−2π5arcsin(31​)​+5n−1
Simplify −2π5arcsin(31​)​−1:2π−5arcsin(31​)−2π​
−2π5arcsin(31​)​−1
Convert element to fraction: 1=2π1⋅2π​=−2π5arcsin(31​)​−2π1⋅2π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2π−5arcsin(31​)−1⋅2π​
Multiply the numbers: 1⋅2=2=2π−5arcsin(31​)−2π​
x≥2π−5arcsin(31​)−2π​+5n
52π​(x+1)≤π−arcsin(−31​)+2πn:x≤2π3π+5arcsin(31​)​+5n
52π​(x+1)≤π−arcsin(−31​)+2πn
Simplify π−arcsin(−31​)+2πn:π+arcsin(31​)+2πn
π−arcsin(−31​)+2πn
Use the following property: arcsin(−x)=−arcsin(x)arcsin(−31​)=−arcsin(31​)=π−(−arcsin(31​))+2πn
Apply rule −(−a)=a=π+arcsin(31​)+2πn
52π​(x+1)≤π+arcsin(31​)+2πn
Multiply both sides by 5
52π​(x+1)≤π+arcsin(31​)+2πn
Multiply both sides by 55⋅52π​(x+1)≤5π+5arcsin(31​)+5⋅2πn
Simplify
5⋅52π​(x+1)≤5π+5arcsin(31​)+5⋅2πn
Simplify 5⋅52π​(x+1):2π(x+1)
5⋅52π​(x+1)
Multiply fractions: a⋅cb​=ca⋅b​=52⋅5π​(x+1)
Cancel the common factor: 5=(x+1)⋅2π
Simplify 5π+5arcsin(31​)+5⋅2πn:5π+5arcsin(31​)+10πn
5π+5arcsin(31​)+5⋅2πn
Multiply the numbers: 5⋅2=10=5π+5arcsin(31​)+10πn
2π(x+1)≤5π+5arcsin(31​)+10πn
2π(x+1)≤5π+5arcsin(31​)+10πn
2π(x+1)≤5π+5arcsin(31​)+10πn
Divide both sides by 2π
2π(x+1)≤5π+5arcsin(31​)+10πn
Divide both sides by 2π2π2π(x+1)​≤2π5π​+2π5arcsin(31​)​+2π10πn​
Simplify
2π2π(x+1)​≤2π5π​+2π5arcsin(31​)​+2π10πn​
Simplify 2π2π(x+1)​:x+1
2π2π(x+1)​
Divide the numbers: 22​=1=ππ(x+1)​
Cancel the common factor: π=x+1
Simplify 2π5π​+2π5arcsin(31​)​+2π10πn​:25​+2π5arcsin(31​)​+5n
2π5π​+2π5arcsin(31​)​+2π10πn​
Cancel 2π5π​:25​
2π5π​
Cancel the common factor: π=25​
=25​+2π5arcsin(31​)​+2π10πn​
Cancel 2π10πn​:5n
2π10πn​
Cancel 2π10πn​:5n
2π10πn​
Divide the numbers: 210​=5=π5πn​
Cancel the common factor: π=5n
=5n
=25​+2π5arcsin(31​)​+5n
x+1≤25​+2π5arcsin(31​)​+5n
x+1≤25​+2π5arcsin(31​)​+5n
x+1≤25​+2π5arcsin(31​)​+5n
Move 1to the right side
x+1≤25​+2π5arcsin(31​)​+5n
Subtract 1 from both sidesx+1−1≤25​+2π5arcsin(31​)​+5n−1
Simplify
x+1−1≤25​+2π5arcsin(31​)​+5n−1
Simplify x+1−1:x
x+1−1
Add similar elements: 1−1≤0
=x
Simplify 25​+2π5arcsin(31​)​+5n−1:5n+23​+2π5arcsin(31​)​
25​+2π5arcsin(31​)​+5n−1
Combine the fractions −1+25​:23​
−1+25​
Convert element to fraction: 1=21⋅2​=−21⋅2​+25​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2−1⋅2+5​
−1⋅2+5=3
−1⋅2+5
Multiply the numbers: 1⋅2=2=−2+5
Add/Subtract the numbers: −2+5=3=3
=23​
=5n+23​+2π5arcsin(31​)​
x≤5n+23​+2π5arcsin(31​)​
x≤5n+23​+2π5arcsin(31​)​
x≤5n+23​+2π5arcsin(31​)​
Simplify 23​+2π5arcsin(31​)​:2π3π+5arcsin(31​)​
23​+2π5arcsin(31​)​
Least Common Multiplier of 2,2π:2π
2,2π
Lowest Common Multiplier (LCM)
Least Common Multiplier of 2,2:2
2,2
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Multiply each factor the greatest number of times it occurs in either 2 or 2=2
Multiply the numbers: 2=2=2
Compute an expression comprised of factors that appear either in 2 or 2π=2π
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 2π
For 23​:multiply the denominator and numerator by π23​=2π3π​
=2π3π​+2π5arcsin(31​)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2π3π+5arcsin(31​)​
x≤2π3π+5arcsin(31​)​+5n
Combine the intervalsx≥2π−5arcsin(31​)−2π​+5nandx≤2π3π+5arcsin(31​)​+5n
Merge Overlapping Intervals2π−5arcsin(31​)−2π​+5n≤x≤2π3π+5arcsin(31​)​+5n

Popular Examples

cos^2(3x)<= 1/4sin(x)-1/2 sqrt(3)<0,-pi<= x<= pisin(x)+cos(x)>= 1((1+cos(x))(1-cos(x)))/(sin(x)+cos(x))>0sin(θ)<0,tan(θ)<0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024