Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

3tan(x)+cot(x)<5sin(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

3tan(x)+cot(x)<5sin(x)

Solution

2π​+2πn<x<π+2πnor23π​+2πn<x<2π+2πn
+2
Interval Notation
(2π​+2πn,π+2πn)∪(23π​+2πn,2π+2πn)
Decimal
1.57079…+2πn<x<3.14159…+2πnor4.71238…+2πn<x<6.28318…+2πn
Solution steps
3tan(x)+cot(x)<5sin(x)
Move 5sin(x)to the left side
3tan(x)+cot(x)<5sin(x)
Subtract 5sin(x) from both sides3tan(x)+cot(x)−5sin(x)<5sin(x)−5sin(x)
3tan(x)+cot(x)−5sin(x)<0
3tan(x)+cot(x)−5sin(x)<0
Periodicity of 3tan(x)+cot(x)−5sin(x):2π
The compound periodicity of the sum of periodic functions is the least common multiplier of the periods3tan(x),cot(x),5sin(x)
Periodicity of 3tan(x):π
Periodicity of a⋅tan(bx+c)+d=∣b∣periodicityoftan(x)​Periodicity of tan(x)is π=∣1∣π​
Simplify=π
Periodicity of cot(x):π
Periodicity of cot(x)is π=π
Periodicity of 5sin(x):2π
Periodicity of a⋅sin(bx+c)+d=∣b∣periodicityofsin(x)​Periodicity of sin(x)is 2π=∣1∣2π​
Simplify=2π
Combine periods: π,π,2π
=2π
Express with sin, cos
3tan(x)+cot(x)−5sin(x)<0
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​3⋅cos(x)sin(x)​+cot(x)−5sin(x)<0
Use the basic trigonometric identity: cot(x)=sin(x)cos(x)​3⋅cos(x)sin(x)​+sin(x)cos(x)​−5sin(x)<0
3⋅cos(x)sin(x)​+sin(x)cos(x)​−5sin(x)<0
Simplify 3⋅cos(x)sin(x)​+sin(x)cos(x)​−5sin(x):cos(x)sin(x)3sin2(x)+cos2(x)−5sin2(x)cos(x)​
3⋅cos(x)sin(x)​+sin(x)cos(x)​−5sin(x)
Multiply 3⋅cos(x)sin(x)​:cos(x)3sin(x)​
3⋅cos(x)sin(x)​
Multiply fractions: a⋅cb​=ca⋅b​=cos(x)sin(x)⋅3​
=cos(x)3sin(x)​+sin(x)cos(x)​−5sin(x)
Convert element to fraction: 5sin(x)=15sin(x)​=cos(x)sin(x)⋅3​+sin(x)cos(x)​−15sin(x)​
Least Common Multiplier of cos(x),sin(x),1:cos(x)sin(x)
cos(x),sin(x),1
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear in at least one of the factored expressions=cos(x)sin(x)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM cos(x)sin(x)
For cos(x)sin(x)⋅3​:multiply the denominator and numerator by sin(x)cos(x)sin(x)⋅3​=cos(x)sin(x)sin(x)⋅3sin(x)​=cos(x)sin(x)3sin2(x)​
For sin(x)cos(x)​:multiply the denominator and numerator by cos(x)sin(x)cos(x)​=sin(x)cos(x)cos(x)cos(x)​=cos(x)sin(x)cos2(x)​
For 15sin(x)​:multiply the denominator and numerator by cos(x)sin(x)15sin(x)​=1⋅cos(x)sin(x)5sin(x)cos(x)sin(x)​=cos(x)sin(x)5sin2(x)cos(x)​
=cos(x)sin(x)3sin2(x)​+cos(x)sin(x)cos2(x)​−cos(x)sin(x)5sin2(x)cos(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(x)sin(x)3sin2(x)+cos2(x)−5sin2(x)cos(x)​
cos(x)sin(x)3sin2(x)+cos2(x)−5sin2(x)cos(x)​<0
Find the zeroes and undifined points of cos(x)sin(x)3sin2(x)+cos2(x)−5sin2(x)cos(x)​for 0≤x<2π
To find the zeroes, set the inequality to zerocos(x)sin(x)3sin2(x)+cos2(x)−5sin2(x)cos(x)​=0
cos(x)sin(x)3sin2(x)+cos2(x)−5sin2(x)cos(x)​=0,0≤x<2π:No Solution for x∈R
cos(x)sin(x)3sin2(x)+cos2(x)−5sin2(x)cos(x)​=0,0≤x<2π
g(x)f(x)​=0⇒f(x)=03sin2(x)+cos2(x)−5sin2(x)cos(x)=0
Rewrite using trig identities
cos2(x)+3sin2(x)−5cos(x)sin2(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=cos2(x)+3(1−cos2(x))−5cos(x)(1−cos2(x))
Simplify cos2(x)+3(1−cos2(x))−5cos(x)(1−cos2(x)):−2cos2(x)−5cos(x)+5cos3(x)+3
cos2(x)+3(1−cos2(x))−5cos(x)(1−cos2(x))
Expand 3(1−cos2(x)):3−3cos2(x)
3(1−cos2(x))
Apply the distributive law: a(b−c)=ab−aca=3,b=1,c=cos2(x)=3⋅1−3cos2(x)
Multiply the numbers: 3⋅1=3=3−3cos2(x)
=cos2(x)+3−3cos2(x)−5cos(x)(1−cos2(x))
Expand −5cos(x)(1−cos2(x)):−5cos(x)+5cos3(x)
−5cos(x)(1−cos2(x))
Apply the distributive law: a(b−c)=ab−aca=−5cos(x),b=1,c=cos2(x)=−5cos(x)⋅1−(−5cos(x))cos2(x)
Apply minus-plus rules−(−a)=a=−5⋅1⋅cos(x)+5cos2(x)cos(x)
Simplify −5⋅1⋅cos(x)+5cos2(x)cos(x):−5cos(x)+5cos3(x)
−5⋅1⋅cos(x)+5cos2(x)cos(x)
5⋅1⋅cos(x)=5cos(x)
5⋅1⋅cos(x)
Multiply the numbers: 5⋅1=5=5cos(x)
5cos2(x)cos(x)=5cos3(x)
5cos2(x)cos(x)
Apply exponent rule: ab⋅ac=ab+ccos2(x)cos(x)=cos2+1(x)=5cos2+1(x)
Add the numbers: 2+1=3=5cos3(x)
=−5cos(x)+5cos3(x)
=−5cos(x)+5cos3(x)
=cos2(x)+3−3cos2(x)−5cos(x)+5cos3(x)
Simplify cos2(x)+3−3cos2(x)−5cos(x)+5cos3(x):−2cos2(x)−5cos(x)+5cos3(x)+3
cos2(x)+3−3cos2(x)−5cos(x)+5cos3(x)
Group like terms=cos2(x)−3cos2(x)−5cos(x)+5cos3(x)+3
Add similar elements: cos2(x)−3cos2(x)=−2cos2(x)=−2cos2(x)−5cos(x)+5cos3(x)+3
=−2cos2(x)−5cos(x)+5cos3(x)+3
=−2cos2(x)−5cos(x)+5cos3(x)+3
3−2cos2(x)−5cos(x)+5cos3(x)=0
Solve by substitution
3−2cos2(x)−5cos(x)+5cos3(x)=0
Let: cos(x)=u3−2u2−5u+5u3=0
3−2u2−5u+5u3=0:u≈−1.06603…
3−2u2−5u+5u3=0
Write in the standard form an​xn+…+a1​x+a0​=05u3−2u2−5u+3=0
Find one solution for 5u3−2u2−5u+3=0 using Newton-Raphson:u≈−1.06603…
5u3−2u2−5u+3=0
Newton-Raphson Approximation Definition
f(u)=5u3−2u2−5u+3
Find f′(u):15u2−4u−5
dud​(5u3−2u2−5u+3)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dud​(5u3)−dud​(2u2)−dud​(5u)+dud​(3)
dud​(5u3)=15u2
dud​(5u3)
Take the constant out: (a⋅f)′=a⋅f′=5dud​(u3)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=5⋅3u3−1
Simplify=15u2
dud​(2u2)=4u
dud​(2u2)
Take the constant out: (a⋅f)′=a⋅f′=2dud​(u2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=2⋅2u2−1
Simplify=4u
dud​(5u)=5
dud​(5u)
Take the constant out: (a⋅f)′=a⋅f′=5dudu​
Apply the common derivative: dudu​=1=5⋅1
Simplify=5
dud​(3)=0
dud​(3)
Derivative of a constant: dxd​(a)=0=0
=15u2−4u−5+0
Simplify=15u2−4u−5
Let u0​=−1Compute un+1​ until Δun+1​<0.000001
u1​=−1.07142…:Δu1​=0.07142…
f(u0​)=5(−1)3−2(−1)2−5(−1)+3=1f′(u0​)=15(−1)2−4(−1)−5=14u1​=−1.07142…
Δu1​=∣−1.07142…−(−1)∣=0.07142…Δu1​=0.07142…
u2​=−1.06606…:Δu2​=0.00536…
f(u1​)=5(−1.07142…)3−2(−1.07142…)2−5(−1.07142…)+3=−0.08855…f′(u1​)=15(−1.07142…)2−4(−1.07142…)−5=16.50510…u2​=−1.06606…
Δu2​=∣−1.06606…−(−1.07142…)∣=0.00536…Δu2​=0.00536…
u3​=−1.06603…:Δu3​=0.00003…
f(u2​)=5(−1.06606…)3−2(−1.06606…)2−5(−1.06606…)+3=−0.00051…f′(u2​)=15(−1.06606…)2−4(−1.06606…)−5=16.31161…u3​=−1.06603…
Δu3​=∣−1.06603…−(−1.06606…)∣=0.00003…Δu3​=0.00003…
u4​=−1.06603…:Δu4​=1.11867E−9
f(u3​)=5(−1.06603…)3−2(−1.06603…)2−5(−1.06603…)+3=−1.8246E−8f′(u3​)=15(−1.06603…)2−4(−1.06603…)−5=16.31046…u4​=−1.06603…
Δu4​=∣−1.06603…−(−1.06603…)∣=1.11867E−9Δu4​=1.11867E−9
u≈−1.06603…
Apply long division:u+1.06603…5u3−2u2−5u+3​=5u2−7.33015…u+2.81417…
5u2−7.33015…u+2.81417…≈0
Find one solution for 5u2−7.33015…u+2.81417…=0 using Newton-Raphson:No Solution for u∈R
5u2−7.33015…u+2.81417…=0
Newton-Raphson Approximation Definition
f(u)=5u2−7.33015…u+2.81417…
Find f′(u):10u−7.33015…
dud​(5u2−7.33015…u+2.81417…)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dud​(5u2)−dud​(7.33015…u)+dud​(2.81417…)
dud​(5u2)=10u
dud​(5u2)
Take the constant out: (a⋅f)′=a⋅f′=5dud​(u2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=5⋅2u2−1
Simplify=10u
dud​(7.33015…u)=7.33015…
dud​(7.33015…u)
Take the constant out: (a⋅f)′=a⋅f′=7.33015…dudu​
Apply the common derivative: dudu​=1=7.33015…⋅1
Simplify=7.33015…
dud​(2.81417…)=0
dud​(2.81417…)
Derivative of a constant: dxd​(a)=0=0
=10u−7.33015…+0
Simplify=10u−7.33015…
Let u0​=0Compute un+1​ until Δun+1​<0.000001
u1​=0.38391…:Δu1​=0.38391…
f(u0​)=5⋅02−7.33015…⋅0+2.81417…=2.81417…f′(u0​)=10⋅0−7.33015…=−7.33015…u1​=0.38391…
Δu1​=∣0.38391…−0∣=0.38391…Δu1​=0.38391…
u2​=0.59502…:Δu2​=0.21110…
f(u1​)=5⋅0.38391…2−7.33015…⋅0.38391…+2.81417…=0.73696…f′(u1​)=10⋅0.38391…−7.33015…=−3.49098…u2​=0.59502…
Δu2​=∣0.59502…−0.38391…∣=0.21110…Δu2​=0.21110…
u3​=0.75649…:Δu3​=0.16147…
f(u2​)=5⋅0.59502…2−7.33015…⋅0.59502…+2.81417…=0.22282…f′(u2​)=10⋅0.59502…−7.33015…=−1.37992…u3​=0.75649…
Δu3​=∣0.75649…−0.59502…∣=0.16147…Δu3​=0.16147…
u4​=0.20133…:Δu4​=0.55516…
f(u3​)=5⋅0.75649…2−7.33015…⋅0.75649…+2.81417…=0.13037…f′(u3​)=10⋅0.75649…−7.33015…=0.23484…u4​=0.20133…
Δu4​=∣0.20133…−0.75649…∣=0.55516…Δu4​=0.55516…
u5​=0.49118…:Δu5​=0.28984…
f(u4​)=5⋅0.20133…2−7.33015…⋅0.20133…+2.81417…=1.54101…f′(u4​)=10⋅0.20133…−7.33015…=−5.31676…u5​=0.49118…
Δu5​=∣0.49118…−0.20133…∣=0.28984…Δu5​=0.28984…
u6​=0.66486…:Δu6​=0.17368…
f(u5​)=5⋅0.49118…2−7.33015…⋅0.49118…+2.81417…=0.42003…f′(u5​)=10⋅0.49118…−7.33015…=−2.41835…u6​=0.66486…
Δu6​=∣0.66486…−0.49118…∣=0.17368…Δu6​=0.17368…
u7​=0.88620…:Δu7​=0.22133…
f(u6​)=5⋅0.66486…2−7.33015…⋅0.66486…+2.81417…=0.15083…f′(u6​)=10⋅0.66486…−7.33015…=−0.68147…u7​=0.88620…
Δu7​=∣0.88620…−0.66486…∣=0.22133…Δu7​=0.22133…
u8​=0.72630…:Δu8​=0.15990…
f(u7​)=5⋅0.88620…2−7.33015…⋅0.88620…+2.81417…=0.24495…f′(u7​)=10⋅0.88620…−7.33015…=1.53190…u8​=0.72630…
Δu8​=∣0.72630…−0.88620…∣=0.15990…Δu8​=0.15990…
u9​=2.63145…:Δu9​=1.90514…
f(u8​)=5⋅0.72630…2−7.33015…⋅0.72630…+2.81417…=0.12784…f′(u8​)=10⋅0.72630…−7.33015…=−0.06710…u9​=2.63145…
Δu9​=∣2.63145…−0.72630…∣=1.90514…Δu9​=1.90514…
u10​=1.67551…:Δu10​=0.95594…
f(u9​)=5⋅2.63145…2−7.33015…⋅2.63145…+2.81417…=18.14798…f′(u9​)=10⋅2.63145…−7.33015…=18.98439…u10​=1.67551…
Δu10​=∣1.67551…−2.63145…∣=0.95594…Δu10​=0.95594…
u11​=1.19072…:Δu11​=0.48478…
f(u10​)=5⋅1.67551…2−7.33015…⋅1.67551…+2.81417…=4.56912…f′(u10​)=10⋅1.67551…−7.33015…=9.42497…u11​=1.19072…
Δu11​=∣1.19072…−1.67551…∣=0.48478…Δu11​=0.48478…
u12​=0.93398…:Δu12​=0.25673…
f(u11​)=5⋅1.19072…2−7.33015…⋅1.19072…+2.81417…=1.17510…f′(u11​)=10⋅1.19072…−7.33015…=4.57708…u12​=0.93398…
Δu12​=∣0.93398…−1.19072…∣=0.25673…Δu12​=0.25673…
u13​=0.77000…:Δu13​=0.16398…
f(u12​)=5⋅0.93398…2−7.33015…⋅0.93398…+2.81417…=0.32956…f′(u12​)=10⋅0.93398…−7.33015…=2.00972…u13​=0.77000…
Δu13​=∣0.77000…−0.93398…∣=0.16398…Δu13​=0.16398…
u14​=0.40647…:Δu14​=0.36352…
f(u13​)=5⋅0.77000…2−7.33015…⋅0.77000…+2.81417…=0.13445…f′(u13​)=10⋅0.77000…−7.33015…=0.36986…u14​=0.40647…
Δu14​=∣0.40647…−0.77000…∣=0.36352…Δu14​=0.36352…
Cannot find solution
The solution isu≈−1.06603…
Substitute back u=cos(x)cos(x)≈−1.06603…
cos(x)≈−1.06603…
cos(x)=−1.06603…,0≤x<2π:No Solution
cos(x)=−1.06603…,0≤x<2π
−1≤cos(x)≤1NoSolution
Combine all the solutionsNoSolutionforx∈R
Find the undefined points:x=2π​,x=23π​,x=0,x=π
Find the zeros of the denominatorcos(x)sin(x)=0
Solving each part separatelycos(x)=0orsin(x)=0
cos(x)=0,0≤x<2π:x=2π​,x=23π​
cos(x)=0,0≤x<2π
General solutions for cos(x)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=2π​+2πn,x=23π​+2πn
x=2π​+2πn,x=23π​+2πn
Solutions for the range 0≤x<2πx=2π​,x=23π​
sin(x)=0,0≤x<2π:x=0,x=π
sin(x)=0,0≤x<2π
General solutions for sin(x)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=0+2πn,x=π+2πn
x=0+2πn,x=π+2πn
Solve x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn,x=π+2πn
Solutions for the range 0≤x<2πx=0,x=π
Combine all the solutionsx=2π​,x=23π​,x=0,x=π
0,2π​,π,23π​
Identify the intervals0<x<2π​,2π​<x<π,π<x<23π​,23π​<x<2π
Summarize in a table:3sin2(x)+cos2(x)−5sin2(x)cos(x)cos(x)sin(x)cos(x)sin(x)3sin2(x)+cos2(x)−5sin2(x)cos(x)​​x=0++0Undefined​0<x<2π​++++​x=2π​+0+Undefined​2π​<x<π+−+−​x=π+−0Undefined​π<x<23π​+−−+​x=23π​+0−Undefined​23π​<x<2π++−−​x=2π++0Undefined​​
Identify the intervals that satisfy the required condition: <02π​<x<πor23π​<x<2π
Apply the periodicity of 3tan(x)+cot(x)−5sin(x)2π​+2πn<x<π+2πnor23π​+2πn<x<2π+2πn

Popular Examples

sin(x)-1/2 sqrt(3)<02cos(x)>cos(2x)tan^2(x)<1sin(2t)<1,(0,2pi)2sin^2(x)-3sin(x)+1<= 0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024