Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

3tan^2(x)+sqrt(3)tan(x)<= 0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

3tan2(x)+3​tan(x)≤0

Solution

65π​+πn≤x<π+πn
+2
Interval Notation
[65π​+πn,π+πn)
Decimal
2.61799…+πn≤x<3.14159…+πn
Solution steps
3tan2(x)+3​tan(x)≤0
Let: u=tan(x)3u2+3​u≤0
3u2+3​u≤0:−33​​≤u≤0
3u2+3​u≤0
Factor 3u2+3​u:u(3u+3​)
3u2+3​u
Apply exponent rule: ab+c=abacu2=uu=3uu+3​u
Factor out common term u=u(3u+1⋅3​)
Multiply the numbers: 1⋅3=3=u(3u+3​)
u(3u+3​)≤0
Identify the intervals
Find the signs of the factors of u(3u+3​)
Find the signs of u
u=0
u<0
u>0
Find the signs of 3u+3​
3u+3​=0:u=−33​​
3u+3​=0
Move 3​to the right side
3u+3​=0
Subtract 3​ from both sides3u+3​−3​=0−3​
Simplify3u=−3​
3u=−3​
Divide both sides by 3
3u=−3​
Divide both sides by 333u​=3−3​​
Simplifyu=−33​​
u=−33​​
3u+3​<0:u<−33​​
3u+3​<0
Move 3​to the right side
3u+3​<0
Subtract 3​ from both sides3u+3​−3​<0−3​
Simplify3u<−3​
3u<−3​
Divide both sides by 3
3u<−3​
Divide both sides by 333u​<3−3​​
Simplifyu<−33​​
u<−33​​
3u+3​>0:u>−33​​
3u+3​>0
Move 3​to the right side
3u+3​>0
Subtract 3​ from both sides3u+3​−3​>0−3​
Simplify3u>−3​
3u>−3​
Divide both sides by 3
3u>−3​
Divide both sides by 333u​>3−3​​
Simplifyu>−33​​
u>−33​​
Summarize in a table:u3u+3​u(3u+3​)​u<−33​​−−+​u=−33​​−00​−33​​<u<0−+−​u=00+0​u>0+++​​
Identify the intervals that satisfy the required condition: ≤0u=−33​​or−33​​<u<0oru=0
Merge Overlapping Intervals
−33​​≤u<0oru=0
The union of two intervals is the set of numbers which are in either interval
u=−33​​or−33​​<u<0
−33​​≤u<0
The union of two intervals is the set of numbers which are in either interval
−33​​≤u<0oru=0
−33​​≤u≤0
−33​​≤u≤0
−33​​≤u≤0
−33​​≤u≤0
Substitute back u=tan(x)−33​​≤tan(x)≤0
If a≤u≤bthen a≤uandu≤b−33​​≤tan(x)andtan(x)≤0
−33​​≤tan(x):−6π​+πn≤x<2π​+πn
−33​​≤tan(x)
Switch sidestan(x)≥−33​​
If tan(x)≥athen arctan(a)+πn≤x<2π​+πnarctan(−33​​)+πn≤x<2π​+πn
Simplify arctan(−33​​):−6π​
arctan(−33​​)
Use the following property: arctan(−x)=−arctan(x)arctan(−33​​)=−arctan(33​​)=−arctan(33​​)
Use the following trivial identity:arctan(33​​)=6π​
arctan(33​​)
x033​​13​​arctan(x)06π​4π​3π​​arctan(x)0∘30∘45∘60∘​​
=6π​
=−6π​
−6π​+πn≤x<2π​+πn
tan(x)≤0:−2π​+πn<x≤πn
tan(x)≤0
If tan(x)≤athen −2π​+πn<x≤arctan(a)+πn−2π​+πn<x≤arctan(0)+πn
Simplify arctan(0):0
arctan(0)
Use the following trivial identity:arctan(0)=0x033​​13​​arctan(x)06π​4π​3π​​arctan(x)0∘30∘45∘60∘​​=0
−2π​+πn<x≤0+πn
Simplify−2π​+πn<x≤πn
Combine the intervals−6π​+πn≤x<2π​+πnand−2π​+πn<x≤πn
Merge Overlapping Intervals65π​+πn≤x<π+πn

Popular Examples

tan(5x)<= 1(-1)/(16)sec^3(t)>0cos(x)<= sin(x)2sin(t)>01-tan(x)<= 0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024