Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

1/(sin^2(x))>= 1

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin2(x)1​≥1

Solution

2πn<x<π+2πnor−π+2πn<x<2πn
+2
Interval Notation
(2πn,π+2πn)∪(−π+2πn,2πn)
Decimal
2πn<x<3.14159…+2πnor−3.14159…+2πn<x<2πn
Solution steps
sin2(x)1​≥1
Rewrite in standard form
sin2(x)1​≥1
Subtract 1 from both sidessin2(x)1​−1≥1−1
Simplifysin2(x)1​−1≥0
Simplify sin2(x)1​−1:sin2(x)1−sin2(x)​
sin2(x)1​−1
Convert element to fraction: 1=sin2(x)1sin2(x)​=sin2(x)1​−sin2(x)1⋅sin2(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sin2(x)1−1⋅sin2(x)​
Multiply: 1⋅sin2(x)=sin2(x)=sin2(x)1−sin2(x)​
sin2(x)1−sin2(x)​≥0
sin2(x)1−sin2(x)​≥0
Factor sin2(x)1−sin2(x)​:sin2(x)−(sin(x)+1)(sin(x)−1)​
sin2(x)1−sin2(x)​
Factor −sin2(x)+1:−(sin(x)+1)(sin(x)−1)
−sin2(x)+1
Factor out common term −1=−(sin2(x)−1)
Factor sin2(x)−1:(sin(x)+1)(sin(x)−1)
sin2(x)−1
Rewrite 1 as 12=sin2(x)−12
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)sin2(x)−12=(sin(x)+1)(sin(x)−1)=(sin(x)+1)(sin(x)−1)
=−(sin(x)+1)(sin(x)−1)
=sin2(x)−(sin(x)+1)(sin(x)−1)​
sin2(x)−(sin(x)+1)(sin(x)−1)​≥0
Multiply both sides by −1 (reverse the inequality)sin2(x)(−(sin(x)+1)(sin(x)−1))(−1)​≤0⋅(−1)
Simplifysin2(x)(sin(x)+1)(sin(x)−1)​≤0
Identify the intervals
Find the signs of the factors of sin2(x)(sin(x)+1)(sin(x)−1)​
Find the signs of sin(x)+1
sin(x)+1=0:sin(x)=−1
sin(x)+1=0
Move 1to the right side
sin(x)+1=0
Subtract 1 from both sidessin(x)+1−1=0−1
Simplifysin(x)=−1
sin(x)=−1
sin(x)+1<0:sin(x)<−1
sin(x)+1<0
Move 1to the right side
sin(x)+1<0
Subtract 1 from both sidessin(x)+1−1<0−1
Simplifysin(x)<−1
sin(x)<−1
sin(x)+1>0:sin(x)>−1
sin(x)+1>0
Move 1to the right side
sin(x)+1>0
Subtract 1 from both sidessin(x)+1−1>0−1
Simplifysin(x)>−1
sin(x)>−1
Find the signs of sin(x)−1
sin(x)−1=0:sin(x)=1
sin(x)−1=0
Move 1to the right side
sin(x)−1=0
Add 1 to both sidessin(x)−1+1=0+1
Simplifysin(x)=1
sin(x)=1
sin(x)−1<0:sin(x)<1
sin(x)−1<0
Move 1to the right side
sin(x)−1<0
Add 1 to both sidessin(x)−1+1<0+1
Simplifysin(x)<1
sin(x)<1
sin(x)−1>0:sin(x)>1
sin(x)−1>0
Move 1to the right side
sin(x)−1>0
Add 1 to both sidessin(x)−1+1>0+1
Simplifysin(x)>1
sin(x)>1
Find the signs of sin2(x)
sin2(x)=0:sin(x)=0
sin2(x)=0
Apply rule xn=0⇒x=0
sin(x)=0
sin2(x)>0:sin(x)<0orsin(x)>0
sin2(x)>0
For un>0, if nis even then u<0oru>0
sin(x)<0orsin(x)>0
Find singularity points
Find the zeros of the denominator sin2(x):No Solution
sin2(x)=0
The sides are not equalNoSolution
Summarize in a table:sin(x)+1sin(x)−1sin2(x)sin2(x)(sin(x)+1)(sin(x)−1)​​sin(x)<−1−−++​sin(x)=−10−+0​−1<sin(x)<0+−+−​sin(x)=0+−0Undefined​0<sin(x)<1+−+−​sin(x)=1+0+0​sin(x)>1++++​​
Identify the intervals that satisfy the required condition: ≤0sin(x)=−1or−1<sin(x)<0or0<sin(x)<1orsin(x)=1
Merge Overlapping Intervals
−1≤sin(x)<0or0<sin(x)<1orsin(x)=1
The union of two intervals is the set of numbers which are in either interval
sin(x)=−1or−1<sin(x)<0
−1≤sin(x)<0
The union of two intervals is the set of numbers which are in either interval
−1≤sin(x)<0or0<sin(x)<1
−1≤sin(x)<0or0<sin(x)<1
The union of two intervals is the set of numbers which are in either interval
−1≤sin(x)<0or0<sin(x)<1orsin(x)=1
−1≤sin(x)<0or0<sin(x)≤1
−1≤sin(x)<0or0<sin(x)≤1
−1≤sin(x)<0or0<sin(x)≤1
−1≤sin(x)<0:−π+2πn<x<2πn
−1≤sin(x)<0
If a≤u<bthen a≤uandu<b−1≤sin(x)andsin(x)<0
−1≤sin(x):True for all x∈R
−1≤sin(x)
Switch sidessin(x)≥−1
Range of sin(x):−1≤sin(x)≤1
Function range definition
The range of the basic sinfunction is −1≤sin(x)≤1−1≤sin(x)≤1
sin(x)≥−1and−1≤sin(x)≤1:−1≤sin(x)≤1
Let y=sin(x)
Combine the intervalsy≥−1and−1≤y≤1
Merge Overlapping Intervals
y≥−1and−1≤y≤1
The intersection of two intervals is the set of numbers which are in both intervals
y≥−1and−1≤y≤1
−1≤y≤1
−1≤y≤1
Trueforallx
Trueforallx∈R
sin(x)<0:−π+2πn<x<2πn
sin(x)<0
For sin(x)<a, if −1<a≤1 then −π−arcsin(a)+2πn<x<arcsin(a)+2πn−π−arcsin(0)+2πn<x<arcsin(0)+2πn
Simplify −π−arcsin(0):−π
−π−arcsin(0)
Use the following trivial identity:arcsin(0)=0x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=−π−0
−π−0=−π=−π
Simplify arcsin(0):0
arcsin(0)
Use the following trivial identity:arcsin(0)=0x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=0
−π+2πn<x<0+2πn
Simplify−π+2πn<x<2πn
Combine the intervalsTrueforallx∈Rand−π+2πn<x<2πn
Merge Overlapping Intervals−π+2πn<x<2πn
0<sin(x)≤1:2πn<x<π+2πn
0<sin(x)≤1
If a<u≤bthen a<uandu≤b0<sin(x)andsin(x)≤1
0<sin(x):2πn<x<π+2πn
0<sin(x)
Switch sidessin(x)>0
For sin(x)>a, if −1≤a<1 then arcsin(a)+2πn<x<π−arcsin(a)+2πnarcsin(0)+2πn<x<π−arcsin(0)+2πn
Simplify arcsin(0):0
arcsin(0)
Use the following trivial identity:arcsin(0)=0x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=0
Simplify π−arcsin(0):π
π−arcsin(0)
Use the following trivial identity:arcsin(0)=0x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=π−0
π−0=π=π
0+2πn<x<π+2πn
Simplify2πn<x<π+2πn
sin(x)≤1:True for all x∈R
sin(x)≤1
Range of sin(x):−1≤sin(x)≤1
Function range definition
The range of the basic sinfunction is −1≤sin(x)≤1−1≤sin(x)≤1
sin(x)≤1and−1≤sin(x)≤1:−1≤sin(x)≤1
Let y=sin(x)
Combine the intervalsy≤1and−1≤y≤1
Merge Overlapping Intervals
y≤1and−1≤y≤1
The intersection of two intervals is the set of numbers which are in both intervals
y≤1and−1≤y≤1
−1≤y≤1
−1≤y≤1
Trueforallx
Trueforallx∈R
Combine the intervals2πn<x<π+2πnandTrueforallx∈R
Merge Overlapping Intervals2πn<x<π+2πn
Combine the intervals−π+2πn<x<2πnor2πn<x<π+2πn
Merge Overlapping Intervals2πn<x<π+2πnor−π+2πn<x<2πn

Popular Examples

tan(x)>= 1/(sqrt(3))solvefor y,sin(x)xcos(y)<0cos(x/2)+1/2 <0sin((5x)/2)<= 0.6sqrt(3)-tan(x)<0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024