Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(4cos^2(x)-3)(1-tan^2(x))<= 0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

(4cos2(x)−3)(1−tan2(x))≤0

Solution

6π​+πn≤x≤4π​+πnor43π​+πn≤x≤65π​+πn
+2
Interval Notation
[6π​+πn,4π​+πn]∪[43π​+πn,65π​+πn]
Decimal
0.52359…+πn≤x≤0.78539…+πnor2.35619…+πn≤x≤2.61799…+πn
Solution steps
(4cos2(x)−3)(1−tan2(x))≤0
Use the following identity: cos2(x)+sin2(x)=1Therefore cos2(x)=1−sin2(x)(4(1−sin2(x))−3)(1−tan2(x))≤0
Simplify (4(1−sin2(x))−3)(1−tan2(x)):(−4sin2(x)+1)(1−tan2(x))
(4(1−sin2(x))−3)(1−tan2(x))
Expand 4(1−sin2(x))−3:−4sin2(x)+1
4(1−sin2(x))−3
Expand 4(1−sin2(x)):4−4sin2(x)
4(1−sin2(x))
Apply the distributive law: a(b−c)=ab−aca=4,b=1,c=sin2(x)=4⋅1−4sin2(x)
Multiply the numbers: 4⋅1=4=4−4sin2(x)
=4−4sin2(x)−3
Simplify 4−4sin2(x)−3:−4sin2(x)+1
4−4sin2(x)−3
Group like terms=−4sin2(x)+4−3
Add/Subtract the numbers: 4−3=1=−4sin2(x)+1
=−4sin2(x)+1
=(−4sin2(x)+1)(−tan2(x)+1)
=(−4sin2(x)+1)(1−tan2(x))
(−4sin2(x)+1)(1−tan2(x))≤0
Periodicity of (−4sin2(x)+1)(1−tan2(x)):π
(−4sin2(x)+1)(1−tan2(x))is composed of the following functions and periods:sin(x)with periodicity of 2π
The compound periodicity is:=π
Express with sin, cos
(−4sin2(x)+1)(1−tan2(x))≤0
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​(−4sin2(x)+1)(1−(cos(x)sin(x)​)2)≤0
(−4sin2(x)+1)(1−(cos(x)sin(x)​)2)≤0
Simplify (−4sin2(x)+1)(1−(cos(x)sin(x)​)2):cos2(x)(cos2(x)−sin2(x))(−4sin2(x)+1)​
(−4sin2(x)+1)(1−(cos(x)sin(x)​)2)
Apply exponent rule: (ba​)c=bcac​=(−4sin2(x)+1)(−cos2(x)sin2(x)​+1)
Join 1−cos2(x)sin2(x)​:cos2(x)cos2(x)−sin2(x)​
1−cos2(x)sin2(x)​
Convert element to fraction: 1=cos2(x)1cos2(x)​=cos2(x)1⋅cos2(x)​−cos2(x)sin2(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos2(x)1⋅cos2(x)−sin2(x)​
Multiply: 1⋅cos2(x)=cos2(x)=cos2(x)cos2(x)−sin2(x)​
=cos2(x)cos2(x)−sin2(x)​(−4sin2(x)+1)
Multiply fractions: a⋅cb​=ca⋅b​=cos2(x)(cos2(x)−sin2(x))(−4sin2(x)+1)​
cos2(x)(cos2(x)−sin2(x))(−4sin2(x)+1)​≤0
Find the zeroes and undifined points of cos2(x)(cos2(x)−sin2(x))(−4sin2(x)+1)​for 0≤x<π
To find the zeroes, set the inequality to zerocos2(x)(cos2(x)−sin2(x))(−4sin2(x)+1)​=0
cos2(x)(cos2(x)−sin2(x))(−4sin2(x)+1)​=0,0≤x<π:x=4π​,x=43π​,x=6π​,x=65π​
cos2(x)(cos2(x)−sin2(x))(−4sin2(x)+1)​=0,0≤x<π
g(x)f(x)​=0⇒f(x)=0(cos2(x)−sin2(x))(−4sin2(x)+1)=0
Solving each part separatelycos2(x)−sin2(x)=0or−4sin2(x)+1=0
cos2(x)−sin2(x)=0,0≤x<π:x=4π​,x=43π​
cos2(x)−sin2(x)=0,0≤x<π
Rewrite using trig identities
cos2(x)−sin2(x)
Use the Double Angle identity: cos2(x)−sin2(x)=cos(2x)=cos(2x)
cos(2x)=0
General solutions for cos(2x)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
2x=2π​+2πn,2x=23π​+2πn
2x=2π​+2πn,2x=23π​+2πn
Solve 2x=2π​+2πn:x=4π​+πn
2x=2π​+2πn
Divide both sides by 2
2x=2π​+2πn
Divide both sides by 222x​=22π​​+22πn​
Simplify
22x​=22π​​+22πn​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 22π​​+22πn​:4π​+πn
22π​​+22πn​
22π​​=4π​
22π​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅2π​
Multiply the numbers: 2⋅2=4=4π​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
=4π​+πn
x=4π​+πn
x=4π​+πn
x=4π​+πn
Solve 2x=23π​+2πn:x=43π​+πn
2x=23π​+2πn
Divide both sides by 2
2x=23π​+2πn
Divide both sides by 222x​=223π​​+22πn​
Simplify
22x​=223π​​+22πn​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 223π​​+22πn​:43π​+πn
223π​​+22πn​
223π​​=43π​
223π​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅23π​
Multiply the numbers: 2⋅2=4=43π​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
=43π​+πn
x=43π​+πn
x=43π​+πn
x=43π​+πn
x=4π​+πn,x=43π​+πn
Solutions for the range 0≤x<πx=4π​,x=43π​
−4sin2(x)+1=0,0≤x<π:x=6π​,x=65π​
−4sin2(x)+1=0,0≤x<π
Solve by substitution
−4sin2(x)+1=0
Let: sin(x)=u−4u2+1=0
−4u2+1=0:u=21​,u=−21​
−4u2+1=0
Move 1to the right side
−4u2+1=0
Subtract 1 from both sides−4u2+1−1=0−1
Simplify−4u2=−1
−4u2=−1
Divide both sides by −4
−4u2=−1
Divide both sides by −4−4−4u2​=−4−1​
Simplifyu2=41​
u2=41​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=41​​,u=−41​​
41​​=21​
41​​
Apply radical rule: assuming a≥0,b≥0=4​1​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=21​​
Apply rule 1​=1=21​
−41​​=−21​
−41​​
Simplify 41​​:21​​
41​​
Apply radical rule: assuming a≥0,b≥0=4​1​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=21​​
=−21​​
Apply rule 1​=1=−21​
u=21​,u=−21​
Substitute back u=sin(x)sin(x)=21​,sin(x)=−21​
sin(x)=21​,sin(x)=−21​
sin(x)=21​,0≤x<π:x=6π​,x=65π​
sin(x)=21​,0≤x<π
General solutions for sin(x)=21​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=6π​+2πn,x=65π​+2πn
x=6π​+2πn,x=65π​+2πn
Solutions for the range 0≤x<πx=6π​,x=65π​
sin(x)=−21​,0≤x<π:No Solution
sin(x)=−21​,0≤x<π
General solutions for sin(x)=−21​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=67π​+2πn,x=611π​+2πn
x=67π​+2πn,x=611π​+2πn
Solutions for the range 0≤x<πNoSolution
Combine all the solutionsx=6π​,x=65π​
Combine all the solutionsx=4π​,x=43π​,x=6π​,x=65π​
Find the undefined points:x=2π​
Find the zeros of the denominatorcos2(x)=0
Apply rule xn=0⇒x=0
cos(x)=0
General solutions for cos(x)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=2π​+2πn,x=23π​+2πn
x=2π​+2πn,x=23π​+2πn
Solutions for the range 0≤x<πx=2π​
6π​,4π​,2π​,43π​,65π​
Identify the intervals0<x<6π​,6π​<x<4π​,4π​<x<2π​,2π​<x<43π​,43π​<x<65π​,65π​<x<π
Summarize in a table:cos2(x)−sin2(x)−4sin2(x)+1cos2(x)cos2(x)(cos2(x)−sin2(x))(−4sin2(x)+1)​​x=0++++​0<x<6π​++++​x=6π​+0+0​6π​<x<4π​+−+−​x=4π​0−+0​4π​<x<2π​−−++​x=2π​−−0Undefined​2π​<x<43π​−−++​x=43π​0−+0​43π​<x<65π​+−+−​x=65π​+0+0​65π​<x<π++++​x=π++++​​
Identify the intervals that satisfy the required condition: ≤0x=6π​or6π​<x<4π​orx=4π​orx=43π​or43π​<x<65π​orx=65π​
Merge Overlapping Intervals
6π​≤x≤4π​or43π​≤x<65π​orx=65π​
The union of two intervals is the set of numbers which are in either interval
x=6π​or6π​<x<4π​
6π​≤x<4π​
The union of two intervals is the set of numbers which are in either interval
6π​≤x<4π​orx=4π​
6π​≤x≤4π​
The union of two intervals is the set of numbers which are in either interval
6π​≤x≤4π​orx=43π​
6π​≤x≤4π​orx=43π​
The union of two intervals is the set of numbers which are in either interval
6π​≤x≤4π​orx=43π​or43π​<x<65π​
6π​≤x≤4π​or43π​≤x<65π​
The union of two intervals is the set of numbers which are in either interval
6π​≤x≤4π​or43π​≤x<65π​orx=65π​
6π​≤x≤4π​or43π​≤x≤65π​
6π​≤x≤4π​or43π​≤x≤65π​
Apply the periodicity of (−4sin2(x)+1)(1−tan2(x))6π​+πn≤x≤4π​+πnor43π​+πn≤x≤65π​+πn

Popular Examples

cot(θ)<0,sec(θ)>0cos(θ)>0,cot(θ)>0sec(x)<-11+cos(x)>= 0(sin(x)+cos(x))^2>= 3-2tan(x)+tan^2(x)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024