Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan(1/x)<= tan(1/(x+1))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan(x1​)≤tan(x+11​)

Solution

2πn<x<19π2​+2πnor18π−9π+81π2+36π​​+2πn≤x<17π2​+2πnor4π−2π+4π2+2π​​+2πn≤x<15π2​+2πnor14π−7π+49π2+28π​​+2πn≤x<13π2​+2πnor6π−3π+9π2+6π​​+2πn≤x<11π2​+2πnor10π−5π+25π2+20π​​+2πn≤x<9π2​+2πnor4π−2π+4π2+4π​​+2πn≤x<7π2​+2πnor6π−3π+9π2+12π​​+2πn≤x<5π2​+2πnor2π−π+π2+2π​​+2πn≤x<3π2​+2πnor2ππ2+4π​−π​+2πn≤x<π2​+2πn
+2
Interval Notation
(2πn,19π2​+2πn)∪[18π−9π+81π2+36π​​+2πn,17π2​+2πn)∪[4π−2π+4π2+2π​​+2πn,15π2​+2πn)∪[14π−7π+49π2+28π​​+2πn,13π2​+2πn)∪[6π−3π+9π2+6π​​+2πn,11π2​+2πn)∪[10π−5π+25π2+20π​​+2πn,9π2​+2πn)∪[4π−2π+4π2+4π​​+2πn,7π2​+2πn)∪[6π−3π+9π2+12π​​+2πn,5π2​+2πn)∪[2π−π+π2+2π​​+2πn,3π2​+2πn)∪[2ππ2+4π​−π​+2πn,π2​+2πn)
Decimal
2πn<x<0.03350…+2πnor0.03419…+2πn≤x<0.03744…+2πnor0.03832…+2πn≤x<0.04244…+2πnor0.04357…+2πn≤x<0.04897…+2πnor0.05050…+2πn≤x<0.05787…+2πnor0.06005…+2πn≤x<0.07073…+2πnor0.07408…+2πn≤x<0.09094…+2πnor0.09674…+2πn≤x<0.12732…+2πnor0.13965…+2πn≤x<0.21220…+2πnor0.25386…+2πn≤x<0.63661…+2πn
Solution steps
tan(x1​)≤tan(x+11​)
Move tan(x+11​)to the left side
tan(x1​)≤tan(x+11​)
Subtract tan(x+11​) from both sidestan(x1​)−tan(x+11​)≤tan(x+11​)−tan(x+11​)
tan(x1​)−tan(x+11​)≤0
tan(x1​)−tan(x+11​)≤0
Periodicity of tan(x1​)−tan(x+11​):Not periodic
The function tan(x1​)−tan(x+11​)is not periodic=Notperiodic
Express with sin, cos
tan(x1​)−tan(x+11​)≤0
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​cos(x1​)sin(x1​)​−tan(x+11​)≤0
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​cos(x1​)sin(x1​)​−cos(x+11​)sin(x+11​)​≤0
cos(x1​)sin(x1​)​−cos(x+11​)sin(x+11​)​≤0
Simplify cos(x1​)sin(x1​)​−cos(x+11​)sin(x+11​)​:cos(x1​)cos(x+11​)sin(x1​)cos(x+11​)−sin(x+11​)cos(x1​)​
cos(x1​)sin(x1​)​−cos(x+11​)sin(x+11​)​
Least Common Multiplier of cos(x1​),cos(x+11​):cos(x1​)cos(x+11​)
cos(x1​),cos(x+11​)
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in cos(x1​) or cos(x+11​)=cos(x1​)cos(x+11​)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM cos(x1​)cos(x+11​)
For cos(x1​)sin(x1​)​:multiply the denominator and numerator by cos(x+11​)cos(x1​)sin(x1​)​=cos(x1​)cos(x+11​)sin(x1​)cos(x+11​)​
For cos(x+11​)sin(x+11​)​:multiply the denominator and numerator by cos(x1​)cos(x+11​)sin(x+11​)​=cos(x+11​)cos(x1​)sin(x+11​)cos(x1​)​
=cos(x1​)cos(x+11​)sin(x1​)cos(x+11​)​−cos(x+11​)cos(x1​)sin(x+11​)cos(x1​)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(x1​)cos(x+11​)sin(x1​)cos(x+11​)−sin(x+11​)cos(x1​)​
cos(x1​)cos(x+11​)sin(x1​)cos(x+11​)−sin(x+11​)cos(x1​)​≤0
Find the zeroes and undifined points of cos(x1​)cos(x+11​)sin(x1​)cos(x+11​)−sin(x+11​)cos(x1​)​for 0≤x<2π
To find the zeroes, set the inequality to zerocos(x1​)cos(x+11​)sin(x1​)cos(x+11​)−sin(x+11​)cos(x1​)​=0
cos(x1​)cos(x+11​)sin(x1​)cos(x+11​)−sin(x+11​)cos(x1​)​=0,0≤x<2π:x=2ππ2+4π​−π​,x=2π−π+π2+2π​​,x=6π−3π+9π2+12π​​,x=4π−2π+4π2+4π​​,x=10π−5π+25π2+20π​​,x=6π−3π+9π2+6π​​,x=14π−7π+49π2+28π​​,x=4π−2π+4π2+2π​​,x=18π−9π+81π2+36π​​;n=0,n=−21​
cos(x1​)cos(x+11​)sin(x1​)cos(x+11​)−sin(x+11​)cos(x1​)​=0,0≤x<2π
g(x)f(x)​=0⇒f(x)=0sin(x1​)cos(x+11​)−sin(x+11​)cos(x1​)=0
Rewrite using trig identities
sin(x1​)cos(x+11​)−sin(x+11​)cos(x1​)
Use the Angle Difference identity: sin(s)cos(t)−cos(s)sin(t)=sin(s−t)=sin(x1​−x+11​)
sin(x1​−x+11​)=0
General solutions for sin(x1​−x+11​)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x1​−x+11​=0+2πn,x1​−x+11​=π+2πn
x1​−x+11​=0+2πn,x1​−x+11​=π+2πn
Solve x1​−x+11​=0+2πn:x=2πn−πn+πn(πn+2)​​,x=−2πnπn+πn(πn+2)​​;n=0
x1​−x+11​=0+2πn
Multiply by LCM
x1​−x+11​=0+2πn
Find Least Common Multiplier of x,x+1:x(x+1)
x,x+1
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in x or x+1=x(x+1)
Multiply by LCM=x(x+1)x1​x(x+1)−x+11​x(x+1)=0⋅x(x+1)+2πnx(x+1)
Simplify
x1​x(x+1)−x+11​x(x+1)=0⋅x(x+1)+2πnx(x+1)
Simplify x1​x(x+1):x+1
x1​x(x+1)
Multiply fractions: a⋅cb​=ca⋅b​=x1⋅x(x+1)​
Cancel the common factor: x=1⋅(x+1)
Refine=x+1
Simplify −x+11​x(x+1):−x
−x+11​x(x+1)
Multiply fractions: a⋅cb​=ca⋅b​=−x+11⋅x(x+1)​
Cancel the common factor: x+1=−1⋅x
Multiply: 1⋅x=x=−x
Simplify 0⋅x(x+1):0
0⋅x(x+1)
Apply rule 0⋅a=0=0
x+1−x=0+2πnx(x+1)
x+1−x=1
x+1−x
Group like terms=x−x+1
Add similar elements: x−x=0=1
Simplify 0+2πnx(x+1):2πnx(x+1)
0+2πnx(x+1)
0+2πnx(x+1)=2πnx(x+1)=2πnx(x+1)
1=2πnx(x+1)
1=2πnx(x+1)
1=2πnx(x+1)
Solve 1=2πnx(x+1):x=2πn−πn+πn(πn+2)​​,x=−2πnπn+πn(πn+2)​​;n=0
1=2πnx(x+1)
Expand 2πnx(x+1):2πnx2+2πnx
2πnx(x+1)
Apply the distributive law: a(b+c)=ab+aca=2πnx,b=x,c=1=2πnxx+2πnx⋅1
=2πnxx+2⋅1πnx
Simplify 2πnxx+2⋅1πnx:2πnx2+2πnx
2πnxx+2⋅1πnx
2πnxx=2πnx2
2πnxx
Apply exponent rule: ab⋅ac=ab+cxx=x1+1=2πnx1+1
Add the numbers: 1+1=2=2πnx2
2⋅1πnx=2πnx
2⋅1πnx
Multiply the numbers: 2⋅1=2=2πnx
=2πnx2+2πnx
=2πnx2+2πnx
1=2πnx2+2πnx
Switch sides2πnx2+2πnx=1
Move 1to the left side
2πnx2+2πnx=1
Subtract 1 from both sides2πnx2+2πnx−1=1−1
Simplify2πnx2+2πnx−1=0
2πnx2+2πnx−1=0
Solve with the quadratic formula
2πnx2+2πnx−1=0
Quadratic Equation Formula:
For a=2πn,b=2πn,c=−1x1,2​=2⋅2πn−2πn±(2πn)2−4⋅2πn(−1)​​
x1,2​=2⋅2πn−2πn±(2πn)2−4⋅2πn(−1)​​
Simplify (2πn)2−4⋅2πn(−1)​:2πn(πn+2)​
(2πn)2−4⋅2πn(−1)​
Apply rule −(−a)=a=(2πn)2+4⋅2πn⋅1​
Apply exponent rule: (a⋅b)n=anbn=22π2n2+4⋅2⋅1πn​
Multiply the numbers: 4⋅2⋅1=8=22π2n2+8πn​
Factor 22π2n2+8πn:4πn(πn+2)
22π2n2+8πn
Apply exponent rule: ab+c=abacπ2=ππ,n2=nn=4ππnn+8πn
Rewrite as=4πnπn+2⋅4πn
Factor out common term 4πn=4πn(πn+2)
=4πn(πn+2)​
Apply radical rule: assuming a≥0,b≥0=4​πn(πn+2)​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=2πn(πn+2)​
x1,2​=2⋅2πn−2πn±2πn(πn+2)​​;n=0
Separate the solutionsx1​=2⋅2πn−2πn+2πn(πn+2)​​,x2​=2⋅2πn−2πn−2πn(πn+2)​​
x=2⋅2πn−2πn+2πn(πn+2)​​:2πn−πn+πn(πn+2)​​
2⋅2πn−2πn+2πn(πn+2)​​
Multiply the numbers: 2⋅2=4=4πn−2πn+2πn(πn+2)​​
Factor out common term 2=4πn2(−πn+(2+nπ)nπ​)​
Cancel the common factor: 2=2πn−πn+πn(πn+2)​​
x=2⋅2πn−2πn−2πn(πn+2)​​:−2πnπn+πn(πn+2)​​
2⋅2πn−2πn−2πn(πn+2)​​
Multiply the numbers: 2⋅2=4=4πn−2πn−2πn(πn+2)​​
Factor out common term 2=−4πn2(πn+(2+nπ)nπ​)​
Cancel the common factor: 2=−2πnπn+πn(πn+2)​​
The solutions to the quadratic equation are:x=2πn−πn+πn(πn+2)​​,x=−2πnπn+πn(πn+2)​​;n=0
x=2πn−πn+πn(πn+2)​​,x=−2πnπn+πn(πn+2)​​;n=0
Solve x1​−x+11​=π+2πn:x=2(π+2πn)−π−2πn+(π+2πn)2+4(π+2πn)​​,x=2(π+2πn)−π−2πn−(π+2πn)2+4(π+2πn)​​;n=−21​
x1​−x+11​=π+2πn
Multiply by LCM
x1​−x+11​=π+2πn
Find Least Common Multiplier of x,x+1:x(x+1)
x,x+1
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in x or x+1=x(x+1)
Multiply by LCM=x(x+1)x1​x(x+1)−x+11​x(x+1)=πx(x+1)+2πnx(x+1)
Simplify
x1​x(x+1)−x+11​x(x+1)=πx(x+1)+2πnx(x+1)
Simplify x1​x(x+1):x+1
x1​x(x+1)
Multiply fractions: a⋅cb​=ca⋅b​=x1⋅x(x+1)​
Cancel the common factor: x=1⋅(x+1)
Refine=x+1
Simplify −x+11​x(x+1):−x
−x+11​x(x+1)
Multiply fractions: a⋅cb​=ca⋅b​=−x+11⋅x(x+1)​
Cancel the common factor: x+1=−1⋅x
Multiply: 1⋅x=x=−x
x+1−x=πx(x+1)+2πnx(x+1)
x+1−x=1
x+1−x
Group like terms=x−x+1
Add similar elements: x−x=0=1
1=πx(x+1)+2πnx(x+1)
1=πx(x+1)+2πnx(x+1)
1=πx(x+1)+2πnx(x+1)
Solve 1=πx(x+1)+2πnx(x+1):x=2(π+2πn)−π−2πn+(π+2πn)2+4(π+2πn)​​,x=2(π+2πn)−π−2πn−(π+2πn)2+4(π+2πn)​​;n=−21​
1=πx(x+1)+2πnx(x+1)
Expand πx(x+1)+2πnx(x+1):πx2+πx+2πnx2+2πnx
πx(x+1)+2πnx(x+1)
Expand πx(x+1):πx2+πx
πx(x+1)
Apply the distributive law: a(b+c)=ab+aca=πx,b=x,c=1=πxx+πx⋅1
=πxx+1πx
Simplify πxx+1πx:πx2+πx
πxx+1πx
πxx=πx2
πxx
Apply exponent rule: ab⋅ac=ab+cxx=x1+1=πx1+1
Add the numbers: 1+1=2=πx2
1πx=πx
1πx
Multiply: 1π=π=πx
=πx2+πx
=πx2+πx
=πx2+πx+2πnx(x+1)
Expand 2πnx(x+1):2πnx2+2πnx
2πnx(x+1)
Apply the distributive law: a(b+c)=ab+aca=2πnx,b=x,c=1=2πnxx+2πnx⋅1
=2πnxx+2⋅1πnx
Simplify 2πnxx+2⋅1πnx:2πnx2+2πnx
2πnxx+2⋅1πnx
2πnxx=2πnx2
2πnxx
Apply exponent rule: ab⋅ac=ab+cxx=x1+1=2πnx1+1
Add the numbers: 1+1=2=2πnx2
2⋅1πnx=2πnx
2⋅1πnx
Multiply the numbers: 2⋅1=2=2πnx
=2πnx2+2πnx
=2πnx2+2πnx
=πx2+πx+2πnx2+2πnx
1=πx2+πx+2πnx2+2πnx
Switch sidesπx2+πx+2πnx2+2πnx=1
Move 1to the left side
πx2+πx+2πnx2+2πnx=1
Subtract 1 from both sidesπx2+πx+2πnx2+2πnx−1=1−1
Simplifyπx2+πx+2πnx2+2πnx−1=0
πx2+πx+2πnx2+2πnx−1=0
Write in the standard form ax2+bx+c=0(π+2πn)x2+(π+2πn)x−1=0
Solve with the quadratic formula
(π+2πn)x2+(π+2πn)x−1=0
Quadratic Equation Formula:
For a=π+2πn,b=π+2πn,c=−1x1,2​=2(π+2πn)−(π+2πn)±(π+2πn)2−4(π+2πn)(−1)​​
x1,2​=2(π+2πn)−(π+2πn)±(π+2πn)2−4(π+2πn)(−1)​​
Simplify (π+2πn)2−4(π+2πn)(−1)​:(π+2πn)2+4(π+2πn)​
(π+2πn)2−4(π+2πn)(−1)​
Apply rule −(−a)=a=(π+2πn)2+4(π+2πn)⋅1​
Multiply the numbers: 4⋅1=4=(π+2πn)2+4(π+2πn)​
x1,2​=2(π+2πn)−(π+2πn)±(π+2πn)2+4(π+2πn)​​;n=−21​
Separate the solutionsx1​=2(π+2πn)−(π+2πn)+(π+2πn)2+4(π+2πn)​​,x2​=2(π+2πn)−(π+2πn)−(π+2πn)2+4(π+2πn)​​
x=2(π+2πn)−(π+2πn)+(π+2πn)2+4(π+2πn)​​:2(π+2πn)−π−2πn+(π+2πn)2+4(π+2πn)​​
2(π+2πn)−(π+2πn)+(π+2πn)2+4(π+2πn)​​
−(π+2πn):−π−2πn
−(π+2πn)
Distribute parentheses=−(π)−(2πn)
Apply minus-plus rules+(−a)=−a=−π−2πn
=2(π+2πn)−π−2πn+(π+2πn)2+4(π+2πn)​​
x=2(π+2πn)−(π+2πn)−(π+2πn)2+4(π+2πn)​​:2(π+2πn)−π−2πn−(π+2πn)2+4(π+2πn)​​
2(π+2πn)−(π+2πn)−(π+2πn)2+4(π+2πn)​​
−(π+2πn):−π−2πn
−(π+2πn)
Distribute parentheses=−(π)−(2πn)
Apply minus-plus rules+(−a)=−a=−π−2πn
=2(π+2πn)−π−2πn−(π+2πn)2+4(π+2πn)​​
The solutions to the quadratic equation are:x=2(π+2πn)−π−2πn+(π+2πn)2+4(π+2πn)​​,x=2(π+2πn)−π−2πn−(π+2πn)2+4(π+2πn)​​;n=−21​
x=2(π+2πn)−π−2πn+(π+2πn)2+4(π+2πn)​​,x=2(π+2πn)−π−2πn−(π+2πn)2+4(π+2πn)​​;n=−21​
x=2πn−πn+πn(πn+2)​​,x=−2πnπn+πn(πn+2)​​,x=2(π+2πn)−π−2πn+(π+2πn)2+4(π+2πn)​​,x=2(π+2πn)−π−2πn−(π+2πn)2+4(π+2πn)​​;n=0,n=−21​
Solutions for the range 0≤x<2πx=2ππ2+4π​−π​,x=2π−π+π2+2π​​,x=6π−3π+9π2+12π​​,x=4π−2π+4π2+4π​​,x=10π−5π+25π2+20π​​,x=6π−3π+9π2+6π​​,x=14π−7π+49π2+28π​​,x=4π−2π+4π2+2π​​,x=18π−9π+81π2+36π​​;n=0,n=−21​
Find the undefined points:x=π2​,x=3π2​,x=5π2​,x=7π2​,x=9π2​,x=11π2​,x=13π2​,x=15π2​,x=17π2​,x=19π2​
Find the zeros of the denominatorcos(x1​)cos(x+11​)=0
Solving each part separatelycos(x1​)=0orcos(x+11​)=0
cos(x1​)=0,0≤x<2π:x=π2​,x=3π2​,x=5π2​,x=7π2​,x=9π2​,x=11π2​,x=13π2​,x=15π2​,x=17π2​,x=19π2​
cos(x1​)=0,0≤x<2π
General solutions for cos(x1​)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x1​=2π​+2πn,x1​=23π​+2πn
x1​=2π​+2πn,x1​=23π​+2πn
Solve x1​=2π​+2πn:x=π(1+4n)2​;n=−41​
x1​=2π​+2πn
Multiply both sides by x
x1​=2π​+2πn
Multiply both sides by xx1​x=2π​x+2πnx
Simplify1=2π​x+2πnx
1=2π​x+2πnx
Switch sides2π​x+2πnx=1
Multiply both sides by 2
2π​x+2πnx=1
Multiply both sides by 22π​x⋅2+2πnx⋅2=1⋅2
Simplify
2π​x⋅2+2πnx⋅2=1⋅2
Simplify 2π​x⋅2:πx
2π​x⋅2
Multiply fractions: a⋅cb​=ca⋅b​=22π​x
Cancel the common factor: 2=xπ
Simplify 2πnx⋅2:4πnx
2πnx⋅2
Multiply the numbers: 2⋅2=4=4πnx
Simplify 1⋅2:2
1⋅2
Multiply the numbers: 1⋅2=2=2
πx+4πnx=2
πx+4πnx=2
πx+4πnx=2
Factor πx+4πnx:πx(1+4n)
πx+4πnx
Factor out common term xπ=xπ(1+4n)
πx(1+4n)=2
Divide both sides by π(1+4n);n=−41​
πx(1+4n)=2
Divide both sides by π(1+4n);n=−41​π(1+4n)πx(1+4n)​=π(1+4n)2​;n=−41​
Simplifyx=π(1+4n)2​;n=−41​
x=π(1+4n)2​;n=−41​
Solve x1​=23π​+2πn:x=π(3+4n)2​;n=−43​
x1​=23π​+2πn
Multiply both sides by x
x1​=23π​+2πn
Multiply both sides by xx1​x=23π​x+2πnx
Simplify1=23π​x+2πnx
1=23π​x+2πnx
Switch sides23π​x+2πnx=1
Multiply both sides by 2
23π​x+2πnx=1
Multiply both sides by 223π​x⋅2+2πnx⋅2=1⋅2
Simplify
23π​x⋅2+2πnx⋅2=1⋅2
Simplify 23π​x⋅2:3πx
23π​x⋅2
Multiply fractions: a⋅cb​=ca⋅b​=23⋅2π​x
Cancel the common factor: 2=x⋅3π
Simplify 2πnx⋅2:4πnx
2πnx⋅2
Multiply the numbers: 2⋅2=4=4πnx
Simplify 1⋅2:2
1⋅2
Multiply the numbers: 1⋅2=2=2
3πx+4πnx=2
3πx+4πnx=2
3πx+4πnx=2
Factor 3πx+4πnx:πx(3+4n)
3πx+4πnx
Factor out common term xπ=xπ(3+4n)
πx(3+4n)=2
Divide both sides by π(3+4n);n=−43​
πx(3+4n)=2
Divide both sides by π(3+4n);n=−43​π(3+4n)πx(3+4n)​=π(3+4n)2​;n=−43​
Simplifyx=π(3+4n)2​;n=−43​
x=π(3+4n)2​;n=−43​
x=π(1+4n)2​,x=π(3+4n)2​;n=−41​,n=−43​
Solutions for the range 0≤x<2πx=π2​,x=3π2​,x=5π2​,x=7π2​,x=9π2​,x=11π2​,x=13π2​,x=15π2​,x=17π2​,x=19π2​
cos(x+11​)=0,0≤x<2π:No Solution
cos(x+11​)=0,0≤x<2π
General solutions for cos(x+11​)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x+11​=2π​+2πn,x+11​=23π​+2πn
x+11​=2π​+2πn,x+11​=23π​+2πn
Solve x+11​=2π​+2πn:x=π(1+4n)2​−1+4n4n​−1+4n1​;n=−41​
x+11​=2π​+2πn
Multiply by LCM
x+11​=2π​+2πn
Find Least Common Multiplier of x+1,2:2(x+1)
x+1,2
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in x+1 or 2=2(x+1)
Multiply by LCM=2(x+1)x+11​⋅2(x+1)=2π​⋅2(x+1)+2πn⋅2(x+1)
Simplify
x+11​⋅2(x+1)=2π​⋅2(x+1)+2πn⋅2(x+1)
Simplify x+11​⋅2(x+1):2
x+11​⋅2(x+1)
Multiply fractions: a⋅cb​=ca⋅b​=x+11⋅2(x+1)​
Cancel the common factor: x+1=1⋅2
Multiply the numbers: 1⋅2=2=2
Simplify 2π​⋅2(x+1):π(x+1)
2π​⋅2(x+1)
Multiply fractions: a⋅cb​=ca⋅b​=22π​(x+1)
Cancel the common factor: 2=(x+1)π
Simplify 2πn⋅2(x+1):4πn(x+1)
2πn⋅2(x+1)
Multiply the numbers: 2⋅2=4=4πn(x+1)
2=π(x+1)+4πn(x+1)
2=π(x+1)+4πn(x+1)
2=π(x+1)+4πn(x+1)
Switch sidesπ(x+1)+4πn(x+1)=2
Expand π(x+1):πx+π
π(x+1)
Apply the distributive law: a(b+c)=ab+aca=π,b=x,c=1=πx+π1
=πx+1π
Multiply: 1π=π=πx+π
πx+π+4πn(x+1)=2
Expand 4πn(x+1):4πnx+4πn
4πn(x+1)
Apply the distributive law: a(b+c)=ab+aca=4πn,b=x,c=1=4πnx+4πn⋅1
=4πnx+4⋅1πn
Multiply the numbers: 4⋅1=4=4πnx+4πn
πx+π+4πnx+4πn=2
Move 4πnto the right side
πx+π+4πnx+4πn=2
Subtract 4πn from both sidesπx+π+4πnx+4πn−4πn=2−4πn
Simplifyπx+π+4πnx=2−4πn
πx+π+4πnx=2−4πn
Move πto the right side
πx+π+4πnx=2−4πn
Subtract π from both sidesπx+π+4πnx−π=2−4πn−π
Simplifyπx+4πnx=2−4πn−π
πx+4πnx=2−4πn−π
Factor πx+4πnx:πx(1+4n)
πx+4πnx
Factor out common term xπ=xπ(1+4n)
πx(1+4n)=2−4πn−π
Divide both sides by π(1+4n);n=−41​
πx(1+4n)=2−4πn−π
Divide both sides by π(1+4n);n=−41​π(1+4n)πx(1+4n)​=π(1+4n)2​−π(1+4n)4πn​−π(1+4n)π​;n=−41​
Simplify
π(1+4n)πx(1+4n)​=π(1+4n)2​−π(1+4n)4πn​−π(1+4n)π​
Simplify π(1+4n)πx(1+4n)​:x
π(1+4n)πx(1+4n)​
Cancel the common factor: π=1+4nx(4n+1)​
Cancel the common factor: 1+4n=x
Simplify π(1+4n)2​−π(1+4n)4πn​−π(1+4n)π​:π(1+4n)2​−1+4n4n​−1+4n1​
π(1+4n)2​−π(1+4n)4πn​−π(1+4n)π​
Cancel π(1+4n)4πn​:4n+14n​
π(1+4n)4πn​
Cancel the common factor: π=1+4n4n​
=π(4n+1)2​−4n+14n​−π(4n+1)π​
Cancel π(1+4n)π​:4n+11​
π(1+4n)π​
Cancel the common factor: π=1+4n1​
=π(4n+1)2​−4n+14n​−4n+11​
x=π(1+4n)2​−1+4n4n​−1+4n1​;n=−41​
x=π(1+4n)2​−1+4n4n​−1+4n1​;n=−41​
x=π(1+4n)2​−1+4n4n​−1+4n1​;n=−41​
Solve x+11​=23π​+2πn:x=π(3+4n)2​−3+4n4n​−3+4n3​;n=−43​
x+11​=23π​+2πn
Multiply by LCM
x+11​=23π​+2πn
Find Least Common Multiplier of x+1,2:2(x+1)
x+1,2
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in x+1 or 2=2(x+1)
Multiply by LCM=2(x+1)x+11​⋅2(x+1)=23π​⋅2(x+1)+2πn⋅2(x+1)
Simplify
x+11​⋅2(x+1)=23π​⋅2(x+1)+2πn⋅2(x+1)
Simplify x+11​⋅2(x+1):2
x+11​⋅2(x+1)
Multiply fractions: a⋅cb​=ca⋅b​=x+11⋅2(x+1)​
Cancel the common factor: x+1=1⋅2
Multiply the numbers: 1⋅2=2=2
Simplify 23π​⋅2(x+1):3π(x+1)
23π​⋅2(x+1)
Multiply fractions: a⋅cb​=ca⋅b​=23⋅2π​(x+1)
Cancel the common factor: 2=(x+1)⋅3π
Simplify 2πn⋅2(x+1):4πn(x+1)
2πn⋅2(x+1)
Multiply the numbers: 2⋅2=4=4πn(x+1)
2=3π(x+1)+4πn(x+1)
2=3π(x+1)+4πn(x+1)
2=3π(x+1)+4πn(x+1)
Switch sides3π(x+1)+4πn(x+1)=2
Expand 3π(x+1):3πx+3π
3π(x+1)
Apply the distributive law: a(b+c)=ab+aca=3π,b=x,c=1=3πx+3π1
=3πx+3⋅1π
Multiply the numbers: 3⋅1=3=3πx+3π
3πx+3π+4πn(x+1)=2
Expand 4πn(x+1):4πnx+4πn
4πn(x+1)
Apply the distributive law: a(b+c)=ab+aca=4πn,b=x,c=1=4πnx+4πn⋅1
=4πnx+4⋅1πn
Multiply the numbers: 4⋅1=4=4πnx+4πn
3πx+3π+4πnx+4πn=2
Move 4πnto the right side
3πx+3π+4πnx+4πn=2
Subtract 4πn from both sides3πx+3π+4πnx+4πn−4πn=2−4πn
Simplify3πx+3π+4πnx=2−4πn
3πx+3π+4πnx=2−4πn
Move 3πto the right side
3πx+3π+4πnx=2−4πn
Subtract 3π from both sides3πx+3π+4πnx−3π=2−4πn−3π
Simplify3πx+4πnx=2−4πn−3π
3πx+4πnx=2−4πn−3π
Factor 3πx+4πnx:πx(3+4n)
3πx+4πnx
Factor out common term xπ=xπ(3+4n)
πx(3+4n)=2−4πn−3π
Divide both sides by π(3+4n);n=−43​
πx(3+4n)=2−4πn−3π
Divide both sides by π(3+4n);n=−43​π(3+4n)πx(3+4n)​=π(3+4n)2​−π(3+4n)4πn​−π(3+4n)3π​;n=−43​
Simplify
π(3+4n)πx(3+4n)​=π(3+4n)2​−π(3+4n)4πn​−π(3+4n)3π​
Simplify π(3+4n)πx(3+4n)​:x
π(3+4n)πx(3+4n)​
Cancel the common factor: π=3+4nx(4n+3)​
Cancel the common factor: 3+4n=x
Simplify π(3+4n)2​−π(3+4n)4πn​−π(3+4n)3π​:π(3+4n)2​−3+4n4n​−3+4n3​
π(3+4n)2​−π(3+4n)4πn​−π(3+4n)3π​
Cancel π(3+4n)4πn​:4n+34n​
π(3+4n)4πn​
Cancel the common factor: π=3+4n4n​
=π(4n+3)2​−4n+34n​−π(4n+3)3π​
Cancel π(3+4n)3π​:4n+33​
π(3+4n)3π​
Cancel the common factor: π=3+4n3​
=π(4n+3)2​−4n+34n​−4n+33​
x=π(3+4n)2​−3+4n4n​−3+4n3​;n=−43​
x=π(3+4n)2​−3+4n4n​−3+4n3​;n=−43​
x=π(3+4n)2​−3+4n4n​−3+4n3​;n=−43​
x=π(1+4n)2​−1+4n4n​−1+4n1​,x=π(3+4n)2​−3+4n4n​−3+4n3​;n=−41​,n=−43​
Solutions for the range 0≤x<2πNoSolution
Combine all the solutionsx=π2​,x=3π2​,x=5π2​,x=7π2​,x=9π2​,x=11π2​,x=13π2​,x=15π2​,x=17π2​,x=19π2​
19π2​,18π−9π+81π2+36π​​,17π2​,4π−2π+4π2+2π​​,15π2​,14π−7π+49π2+28π​​,13π2​,6π−3π+9π2+6π​​,11π2​,10π−5π+25π2+20π​​,9π2​,4π−2π+4π2+4π​​,7π2​,6π−3π+9π2+12π​​,5π2​,2π−π+π2+2π​​,3π2​,2ππ2+4π​−π​,π2​
Identify the intervals0<x<19π2​,19π2​<x<18π−9π+81π2+36π​​,18π−9π+81π2+36π​​<x<17π2​,17π2​<x<4π−2π+4π2+2π​​,4π−2π+4π2+2π​​<x<15π2​,15π2​<x<14π−7π+49π2+28π​​,14π−7π+49π2+28π​​<x<13π2​,13π2​<x<6π−3π+9π2+6π​​,6π−3π+9π2+6π​​<x<11π2​,11π2​<x<10π−5π+25π2+20π​​,10π−5π+25π2+20π​​<x<9π2​,9π2​<x<4π−2π+4π2+4π​​,4π−2π+4π2+4π​​<x<7π2​,7π2​<x<6π−3π+9π2+12π​​,6π−3π+9π2+12π​​<x<5π2​,5π2​<x<2π−π+π2+2π​​,2π−π+π2+2π​​<x<3π2​,3π2​<x<2ππ2+4π​−π​,2ππ2+4π​−π​<x<π2​,π2​<x<2π
Summarize in a table:sin(x1​)cos(x+11​)−sin(x+11​)cos(x1​)cos(x1​)cos(x+11​)cos(x1​)cos(x+11​)sin(x1​)cos(x+11​)−sin(x+11​)cos(x1​)​​x=0UndefinedUndefined+Undefined​0<x<19π2​+−+−​x=19π2​−0+Undefined​19π2​<x<18π−9π+81π2+36π​​−−++​x=18π−9π+81π2+36π​​0−+0​18π−9π+81π2+36π​​<x<17π2​+−+−​x=17π2​+0+Undefined​17π2​<x<4π−2π+4π2+2π​​++++​x=4π−2π+4π2+2π​​0++0​4π−2π+4π2+2π​​<x<15π2​−++−​x=15π2​−0+Undefined​15π2​<x<14π−7π+49π2+28π​​−−++​x=14π−7π+49π2+28π​​0−+0​14π−7π+49π2+28π​​<x<13π2​+−+−​x=13π2​+0+Undefined​13π2​<x<6π−3π+9π2+6π​​++++​x=6π−3π+9π2+6π​​0++0​6π−3π+9π2+6π​​<x<11π2​−++−​x=11π2​−0+Undefined​11π2​<x<10π−5π+25π2+20π​​−−++​x=10π−5π+25π2+20π​​0−+0​10π−5π+25π2+20π​​<x<9π2​+−+−​x=9π2​+0+Undefined​9π2​<x<4π−2π+4π2+4π​​++++​x=4π−2π+4π2+4π​​0++0​4π−2π+4π2+4π​​<x<7π2​−++−​x=7π2​−0+Undefined​7π2​<x<6π−3π+9π2+12π​​−−++​x=6π−3π+9π2+12π​​0−+0​6π−3π+9π2+12π​​<x<5π2​+−+−​x=5π2​+0+Undefined​5π2​<x<2π−π+π2+2π​​++++​x=2π−π+π2+2π​​0++0​2π−π+π2+2π​​<x<3π2​−++−​x=3π2​−0+Undefined​3π2​<x<2ππ2+4π​−π​−−++​x=2ππ2+4π​−π​0−+0​2ππ2+4π​−π​<x<π2​+−+−​x=π2​+0+Undefined​π2​<x<2π++++​x=2π++++​​
Identify the intervals that satisfy the required condition: ≤00<x<19π2​orx=18π−9π+81π2+36π​​or18π−9π+81π2+36π​​<x<17π2​orx=4π−2π+4π2+2π​​or4π−2π+4π2+2π​​<x<15π2​orx=14π−7π+49π2+28π​​or14π−7π+49π2+28π​​<x<13π2​orx=6π−3π+9π2+6π​​or6π−3π+9π2+6π​​<x<11π2​orx=10π−5π+25π2+20π​​or10π−5π+25π2+20π​​<x<9π2​orx=4π−2π+4π2+4π​​or4π−2π+4π2+4π​​<x<7π2​orx=6π−3π+9π2+12π​​or6π−3π+9π2+12π​​<x<5π2​orx=2π−π+π2+2π​​or2π−π+π2+2π​​<x<3π2​orx=2ππ2+4π​−π​or2ππ2+4π​−π​<x<π2​
Merge Overlapping Intervals
0<x<19π2​or18π−9π+81π2+36π​​≤x<17π2​or4π−2π+4π2+2π​​≤x<15π2​or14π−7π+49π2+28π​​≤x<13π2​or6π−3π+9π2+6π​​≤x<11π2​or10π−5π+25π2+20π​​≤x<9π2​or4π−2π+4π2+4π​​≤x<7π2​or6π−3π+9π2+12π​​≤x<5π2​or2π−π+π2+2π​​≤x<3π2​orx=2ππ2+4π​−π​or2ππ2+4π​−π​<x<π2​
The union of two intervals is the set of numbers which are in either interval
0<x<19π2​orx=18π−9π+81π2+36π​​
0<x<19π2​orx=18π−9π+81π2+36π​​
The union of two intervals is the set of numbers which are in either interval
0<x<19π2​orx=18π−9π+81π2+36π​​or18π−9π+81π2+36π​​<x<17π2​
0<x<19π2​or18π−9π+81π2+36π​​≤x<17π2​
The union of two intervals is the set of numbers which are in either interval
0<x<19π2​or18π−9π+81π2+36π​​≤x<17π2​orx=4π−2π+4π2+2π​​
0<x<19π2​or18π−9π+81π2+36π​​≤x<17π2​orx=4π−2π+4π2+2π​​
The union of two intervals is the set of numbers which are in either interval
0<x<19π2​or18π−9π+81π2+36π​​≤x<17π2​orx=4π−2π+4π2+2π​​or4π−2π+4π2+2π​​<x<15π2​
0<x<19π2​or18π−9π+81π2+36π​​≤x<17π2​or4π−2π+4π2+2π​​≤x<15π2​
The union of two intervals is the set of numbers which are in either interval
0<x<19π2​or18π−9π+81π2+36π​​≤x<17π2​or4π−2π+4π2+2π​​≤x<15π2​orx=14π−7π+49π2+28π​​
0<x<19π2​or18π−9π+81π2+36π​​≤x<17π2​or4π−2π+4π2+2π​​≤x<15π2​orx=14π−7π+49π2+28π​​
The union of two intervals is the set of numbers which are in either interval
0<x<19π2​or18π−9π+81π2+36π​​≤x<17π2​or4π−2π+4π2+2π​​≤x<15π2​orx=14π−7π+49π2+28π​​or14π−7π+49π2+28π​​<x<13π2​
0<x<19π2​or18π−9π+81π2+36π​​≤x<17π2​or4π−2π+4π2+2π​​≤x<15π2​or14π−7π+49π2+28π​​≤x<13π2​
The union of two intervals is the set of numbers which are in either interval
0<x<19π2​or18π−9π+81π2+36π​​≤x<17π2​or4π−2π+4π2+2π​​≤x<15π2​or14π−7π+49π2+28π​​≤x<13π2​orx=6π−3π+9π2+6π​​
0<x<19π2​or18π−9π+81π2+36π​​≤x<17π2​or4π−2π+4π2+2π​​≤x<15π2​or14π−7π+49π2+28π​​≤x<13π2​orx=6π−3π+9π2+6π​​
The union of two intervals is the set of numbers which are in either interval
0<x<19π2​or18π−9π+81π2+36π​​≤x<17π2​or4π−2π+4π2+2π​​≤x<15π2​or14π−7π+49π2+28π​​≤x<13π2​orx=6π−3π+9π2+6π​​or6π−3π+9π2+6π​​<x<11π2​
0<x<19π2​or18π−9π+81π2+36π​​≤x<17π2​or4π−2π+4π2+2π​​≤x<15π2​or14π−7π+49π2+28π​​≤x<13π2​or6π−3π+9π2+6π​​≤x<11π2​
The union of two intervals is the set of numbers which are in either interval
0<x<19π2​or18π−9π+81π2+36π​​≤x<17π2​or4π−2π+4π2+2π​​≤x<15π2​or14π−7π+49π2+28π​​≤x<13π2​or6π−3π+9π2+6π​​≤x<11π2​orx=10π−5π+25π2+20π​​
0<x<19π2​or18π−9π+81π2+36π​​≤x<17π2​or4π−2π+4π2+2π​​≤x<15π2​or14π−7π+49π2+28π​​≤x<13π2​or6π−3π+9π2+6π​​≤x<11π2​orx=10π−5π+25π2+20π​​
The union of two intervals is the set of numbers which are in either interval
0<x<19π2​or18π−9π+81π2+36π​​≤x<17π2​or4π−2π+4π2+2π​​≤x<15π2​or14π−7π+49π2+28π​​≤x<13π2​or6π−3π+9π2+6π​​≤x<11π2​orx=10π−5π+25π2+20π​​or10π−5π+25π2+20π​​<x<9π2​
0<x<19π2​or18π−9π+81π2+36π​​≤x<17π2​or4π−2π+4π2+2π​​≤x<15π2​or14π−7π+49π2+28π​​≤x<13π2​or6π−3π+9π2+6π​​≤x<11π2​or10π−5π+25π2+20π​​≤x<9π2​
The union of two intervals is the set of numbers which are in either interval
0<x<19π2​or18π−9π+81π2+36π​​≤x<17π2​or4π−2π+4π2+2π​​≤x<15π2​or14π−7π+49π2+28π​​≤x<13π2​or6π−3π+9π2+6π​​≤x<11π2​or10π−5π+25π2+20π​​≤x<9π2​orx=4π−2π+4π2+4π​​
0<x<19π2​or18π−9π+81π2+36π​​≤x<17π2​or4π−2π+4π2+2π​​≤x<15π2​or14π−7π+49π2+28π​​≤x<13π2​or6π−3π+9π2+6π​​≤x<11π2​or10π−5π+25π2+20π​​≤x<9π2​orx=4π−2π+4π2+4π​​
The union of two intervals is the set of numbers which are in either interval
0<x<19π2​or18π−9π+81π2+36π​​≤x<17π2​or4π−2π+4π2+2π​​≤x<15π2​or14π−7π+49π2+28π​​≤x<13π2​or6π−3π+9π2+6π​​≤x<11π2​or10π−5π+25π2+20π​​≤x<9π2​orx=4π−2π+4π2+4π​​or4π−2π+4π2+4π​​<x<7π2​
0<x<19π2​or18π−9π+81π2+36π​​≤x<17π2​or4π−2π+4π2+2π​​≤x<15π2​or14π−7π+49π2+28π​​≤x<13π2​or6π−3π+9π2+6π​​≤x<11π2​or10π−5π+25π2+20π​​≤x<9π2​or4π−2π+4π2+4π​​≤x<7π2​
The union of two intervals is the set of numbers which are in either interval
0<x<19π2​or18π−9π+81π2+36π​​≤x<17π2​or4π−2π+4π2+2π​​≤x<15π2​or14π−7π+49π2+28π​​≤x<13π2​or6π−3π+9π2+6π​​≤x<11π2​or10π−5π+25π2+20π​​≤x<9π2​or4π−2π+4π2+4π​​≤x<7π2​orx=6π−3π+9π2+12π​​
0<x<19π2​or18π−9π+81π2+36π​​≤x<17π2​or4π−2π+4π2+2π​​≤x<15π2​or14π−7π+49π2+28π​​≤x<13π2​or6π−3π+9π2+6π​​≤x<11π2​or10π−5π+25π2+20π​​≤x<9π2​or4π−2π+4π2+4π​​≤x<7π2​orx=6π−3π+9π2+12π​​
The union of two intervals is the set of numbers which are in either interval
0<x<19π2​or18π−9π+81π2+36π​​≤x<17π2​or4π−2π+4π2+2π​​≤x<15π2​or14π−7π+49π2+28π​​≤x<13π2​or6π−3π+9π2+6π​​≤x<11π2​or10π−5π+25π2+20π​​≤x<9π2​or4π−2π+4π2+4π​​≤x<7π2​orx=6π−3π+9π2+12π​​or6π−3π+9π2+12π​​<x<5π2​
0<x<19π2​or18π−9π+81π2+36π​​≤x<17π2​or4π−2π+4π2+2π​​≤x<15π2​or14π−7π+49π2+28π​​≤x<13π2​or6π−3π+9π2+6π​​≤x<11π2​or10π−5π+25π2+20π​​≤x<9π2​or4π−2π+4π2+4π​​≤x<7π2​or6π−3π+9π2+12π​​≤x<5π2​
The union of two intervals is the set of numbers which are in either interval
0<x<19π2​or18π−9π+81π2+36π​​≤x<17π2​or4π−2π+4π2+2π​​≤x<15π2​or14π−7π+49π2+28π​​≤x<13π2​or6π−3π+9π2+6π​​≤x<11π2​or10π−5π+25π2+20π​​≤x<9π2​or4π−2π+4π2+4π​​≤x<7π2​or6π−3π+9π2+12π​​≤x<5π2​orx=2π−π+π2+2π​​
0<x<19π2​or18π−9π+81π2+36π​​≤x<17π2​or4π−2π+4π2+2π​​≤x<15π2​or14π−7π+49π2+28π​​≤x<13π2​or6π−3π+9π2+6π​​≤x<11π2​or10π−5π+25π2+20π​​≤x<9π2​or4π−2π+4π2+4π​​≤x<7π2​or6π−3π+9π2+12π​​≤x<5π2​orx=2π−π+π2+2π​​
The union of two intervals is the set of numbers which are in either interval
0<x<19π2​or18π−9π+81π2+36π​​≤x<17π2​or4π−2π+4π2+2π​​≤x<15π2​or14π−7π+49π2+28π​​≤x<13π2​or6π−3π+9π2+6π​​≤x<11π2​or10π−5π+25π2+20π​​≤x<9π2​or4π−2π+4π2+4π​​≤x<7π2​or6π−3π+9π2+12π​​≤x<5π2​orx=2π−π+π2+2π​​or2π−π+π2+2π​​<x<3π2​
0<x<19π2​or18π−9π+81π2+36π​​≤x<17π2​or4π−2π+4π2+2π​​≤x<15π2​or14π−7π+49π2+28π​​≤x<13π2​or6π−3π+9π2+6π​​≤x<11π2​or10π−5π+25π2+20π​​≤x<9π2​or4π−2π+4π2+4π​​≤x<7π2​or6π−3π+9π2+12π​​≤x<5π2​or2π−π+π2+2π​​≤x<3π2​
The union of two intervals is the set of numbers which are in either interval
0<x<19π2​or18π−9π+81π2+36π​​≤x<17π2​or4π−2π+4π2+2π​​≤x<15π2​or14π−7π+49π2+28π​​≤x<13π2​or6π−3π+9π2+6π​​≤x<11π2​or10π−5π+25π2+20π​​≤x<9π2​or4π−2π+4π2+4π​​≤x<7π2​or6π−3π+9π2+12π​​≤x<5π2​or2π−π+π2+2π​​≤x<3π2​orx=2ππ2+4π​−π​
0<x<19π2​or18π−9π+81π2+36π​​≤x<17π2​or4π−2π+4π2+2π​​≤x<15π2​or14π−7π+49π2+28π​​≤x<13π2​or6π−3π+9π2+6π​​≤x<11π2​or10π−5π+25π2+20π​​≤x<9π2​or4π−2π+4π2+4π​​≤x<7π2​or6π−3π+9π2+12π​​≤x<5π2​or2π−π+π2+2π​​≤x<3π2​orx=2ππ2+4π​−π​
The union of two intervals is the set of numbers which are in either interval
0<x<19π2​or18π−9π+81π2+36π​​≤x<17π2​or4π−2π+4π2+2π​​≤x<15π2​or14π−7π+49π2+28π​​≤x<13π2​or6π−3π+9π2+6π​​≤x<11π2​or10π−5π+25π2+20π​​≤x<9π2​or4π−2π+4π2+4π​​≤x<7π2​or6π−3π+9π2+12π​​≤x<5π2​or2π−π+π2+2π​​≤x<3π2​orx=2ππ2+4π​−π​or2ππ2+4π​−π​<x<π2​
0<x<19π2​or18π−9π+81π2+36π​​≤x<17π2​or4π−2π+4π2+2π​​≤x<15π2​or14π−7π+49π2+28π​​≤x<13π2​or6π−3π+9π2+6π​​≤x<11π2​or10π−5π+25π2+20π​​≤x<9π2​or4π−2π+4π2+4π​​≤x<7π2​or6π−3π+9π2+12π​​≤x<5π2​or2π−π+π2+2π​​≤x<3π2​or2ππ2+4π​−π​≤x<π2​
0<x<19π2​or18π−9π+81π2+36π​​≤x<17π2​or4π−2π+4π2+2π​​≤x<15π2​or14π−7π+49π2+28π​​≤x<13π2​or6π−3π+9π2+6π​​≤x<11π2​or10π−5π+25π2+20π​​≤x<9π2​or4π−2π+4π2+4π​​≤x<7π2​or6π−3π+9π2+12π​​≤x<5π2​or2π−π+π2+2π​​≤x<3π2​or2ππ2+4π​−π​≤x<π2​
Apply the periodicity of tan(x1​)−tan(x+11​)2πn<x<19π2​+2πnor18π−9π+81π2+36π​​+2πn≤x<17π2​+2πnor4π−2π+4π2+2π​​+2πn≤x<15π2​+2πnor14π−7π+49π2+28π​​+2πn≤x<13π2​+2πnor6π−3π+9π2+6π​​+2πn≤x<11π2​+2πnor10π−5π+25π2+20π​​+2πn≤x<9π2​+2πnor4π−2π+4π2+4π​​+2πn≤x<7π2​+2πnor6π−3π+9π2+12π​​+2πn≤x<5π2​+2πnor2π−π+π2+2π​​+2πn≤x<3π2​+2πnor2ππ2+4π​−π​+2πn≤x<π2​+2πn

Popular Examples

cos(x^4)+sin(x^4)>= 0.51-tan(x)<22sin(x)-1>=-32sin(x)>sqrt(3)3cos^6(x)+5<5
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024