Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

arcsin(1/(x-2))>= 0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

arcsin(x−21​)≥0

Solution

x≥3
+1
Interval Notation
[3,∞)
Solution steps
arcsin(x−21​)≥0
If arcsin(x)≥athen x≥sin(a)x−21​≥sin(0)
sin(0)=0
sin(0)
Use the following trivial identity:sin(0)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=0
x−21​≥0
x−21​≥0:x>2
x−21​≥0
Ifa1​≥0thena>0x−2>0
Move 2to the right side
x−2>0
Add 2 to both sidesx−2+2>0+2
Simplifyx>2
x>2
x>2
Domain of arcsin(x−21​):x≤1orx≥3
Domain definition
Find known functions domain restrictions:x≤1orx≥3
arcsin(f(x))⇒−1≤f(x)≤1
Solve −1≤x−21​≤1:x≤1orx≥3
−1≤x−21​≤1
If a≤u≤bthen a≤uandu≤b−1≤x−21​andx−21​≤1
−1≤x−21​:x≤1orx>2
−1≤x−21​
Switch sidesx−21​≥−1
Rewrite in standard form
x−21​≥−1
Add 1 to both sidesx−21​+1≥−1+1
Simplifyx−21​+1≥0
Simplify x−21​+1:x−2x−1​
x−21​+1
Convert element to fraction: 1=x−21(x−2)​=x−21​+x−21⋅(x−2)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=x−21+1⋅(x−2)​
1+1⋅(x−2)=x−1
1+1⋅(x−2)
1⋅(x−2)=x−2
1⋅(x−2)
Multiply: 1⋅(x−2)=(x−2)=(x−2)
Remove parentheses: (a)=a=x−2
=1+x−2
Group like terms=x+1−2
Add/Subtract the numbers: 1−2=−1=x−1
=x−2x−1​
x−2x−1​≥0
x−2x−1​≥0
Identify the intervals
Find the signs of the factors of x−2x−1​
Find the signs of x−1
x−1=0:x=1
x−1=0
Move 1to the right side
x−1=0
Add 1 to both sidesx−1+1=0+1
Simplifyx=1
x=1
x−1<0:x<1
x−1<0
Move 1to the right side
x−1<0
Add 1 to both sidesx−1+1<0+1
Simplifyx<1
x<1
x−1>0:x>1
x−1>0
Move 1to the right side
x−1>0
Add 1 to both sidesx−1+1>0+1
Simplifyx>1
x>1
Find the signs of x−2
x−2=0:x=2
x−2=0
Move 2to the right side
x−2=0
Add 2 to both sidesx−2+2=0+2
Simplifyx=2
x=2
x−2<0:x<2
x−2<0
Move 2to the right side
x−2<0
Add 2 to both sidesx−2+2<0+2
Simplifyx<2
x<2
x−2>0:x>2
x−2>0
Move 2to the right side
x−2>0
Add 2 to both sidesx−2+2>0+2
Simplifyx>2
x>2
Find singularity points
Find the zeros of the denominator x−2:x=2
x−2=0
Move 2to the right side
x−2=0
Add 2 to both sidesx−2+2=0+2
Simplifyx=2
x=2
Summarize in a table:x−1x−2x−2x−1​​x<1−−+​x=10−0​1<x<2+−−​x=2+0Undefined​x>2+++​​
Identify the intervals that satisfy the required condition: ≥0x<1orx=1orx>2
Merge Overlapping Intervals
x≤1orx>2
The union of two intervals is the set of numbers which are in either interval
x<1orx=1
x≤1
The union of two intervals is the set of numbers which are in either interval
x≤1orx>2
x≤1orx>2
x≤1orx>2
x≤1orx>2
x−21​≤1:x<2orx≥3
x−21​≤1
Rewrite in standard form
x−21​≤1
Subtract 1 from both sidesx−21​−1≤1−1
Simplifyx−21​−1≤0
Simplify x−21​−1:x−2−x+3​
x−21​−1
Convert element to fraction: 1=x−21(x−2)​=x−21​−x−21⋅(x−2)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=x−21−1⋅(x−2)​
Multiply: 1⋅(x−2)=(x−2)=x−21−(x−2)​
Expand 1−(x−2):−x+3
1−(x−2)
−(x−2):−x+2
−(x−2)
Distribute parentheses=−(x)−(−2)
Apply minus-plus rules−(−a)=a,−(a)=−a=−x+2
=1−x+2
Simplify 1−x+2:−x+3
1−x+2
Group like terms=−x+1+2
Add the numbers: 1+2=3=−x+3
=−x+3
=x−2−x+3​
x−2−x+3​≤0
x−2−x+3​≤0
Identify the intervals
Find the signs of the factors of x−2−x+3​
Find the signs of −x+3
−x+3=0:x=3
−x+3=0
Move 3to the right side
−x+3=0
Subtract 3 from both sides−x+3−3=0−3
Simplify−x=−3
−x=−3
Divide both sides by −1
−x=−3
Divide both sides by −1−1−x​=−1−3​
Simplifyx=3
x=3
−x+3<0:x>3
−x+3<0
Move 3to the right side
−x+3<0
Subtract 3 from both sides−x+3−3<0−3
Simplify−x<−3
−x<−3
Multiply both sides by −1
−x<−3
Multiply both sides by -1 (reverse the inequality)(−x)(−1)>(−3)(−1)
Simplifyx>3
x>3
−x+3>0:x<3
−x+3>0
Move 3to the right side
−x+3>0
Subtract 3 from both sides−x+3−3>0−3
Simplify−x>−3
−x>−3
Multiply both sides by −1
−x>−3
Multiply both sides by -1 (reverse the inequality)(−x)(−1)<(−3)(−1)
Simplifyx<3
x<3
Find the signs of x−2
x−2=0:x=2
x−2=0
Move 2to the right side
x−2=0
Add 2 to both sidesx−2+2=0+2
Simplifyx=2
x=2
x−2<0:x<2
x−2<0
Move 2to the right side
x−2<0
Add 2 to both sidesx−2+2<0+2
Simplifyx<2
x<2
x−2>0:x>2
x−2>0
Move 2to the right side
x−2>0
Add 2 to both sidesx−2+2>0+2
Simplifyx>2
x>2
Find singularity points
Find the zeros of the denominator x−2:x=2
x−2=0
Move 2to the right side
x−2=0
Add 2 to both sidesx−2+2=0+2
Simplifyx=2
x=2
Summarize in a table:−x+3x−2x−2−x+3​​x<2+−−​x=2+0Undefined​2<x<3+++​x=30+0​x>3−+−​​
Identify the intervals that satisfy the required condition: ≤0x<2orx=3orx>3
Merge Overlapping Intervals
x<2orx=3orx>3
The union of two intervals is the set of numbers which are in either interval
x<2orx=3
x<2orx=3
The union of two intervals is the set of numbers which are in either interval
x<2orx=3orx>3
x<2orx≥3
x<2orx≥3
x<2orx≥3
Combine the intervals(x≤1orx>2)and(x<2orx≥3)
Merge Overlapping Intervals
x≤1orx>2andx<2orx≥3
The intersection of two intervals is the set of numbers which are in both intervals
x≤1orx>2andx<2orx≥3
x≤1orx≥3
x≤1orx≥3
Find undefined (singularity) points:x=2
arcsin(x−21​)
Take the denominator(s) of arcsin(x−21​) and compare to zero
Solve x−2=0:x=2
x−2=0
Move 2to the right side
x−2=0
Add 2 to both sidesx−2+2=0+2
Simplifyx=2
x=2
The following points are undefinedx=2
Combine real regions and undefined points for final function domainx≤1orx≥3
Combine the intervalsx>2andx≤1orx≥3
Merge Overlapping Intervals
x>2andx≤1orx≥3
The intersection of two intervals is the set of numbers which are in both intervals
x>2andx≤1orx≥3
x≥3
x≥3

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos^2(x)-4cos(x)<0sec^2(x)<1sec(A)<0solvefor x,sin(x)>0sin(2x)<cos(2x)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024